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Machine Learning for understanding ocean bio-physical 
interac7ons 
Dr Fatma Jebri 
Senior Scien)st 
Marine Physics and Ocean Climate 
Na)onal Oceanography Centre 

 
Machine Learning (ML) is emerging as a powerful technique across geophysical science, from solid 
earth to ocean and atmospheric sciences. Unsupervised ML, a major class of ML, iden)fies 
rela)onships among geophysical parameters while reducing their large dimensionality and removing 
unstructured noise. Unsupervised techniques include k-means, Self-Organizing Maps (SOM), 
autoencoders and Genera)ve Adversarial Networks. Unsupervised ML provides new ways in 
analysing complex ocean biological and physical interac)ons, par)cularly for understanding dynamics 
of produc)ve upwelling regimes in Western Boundary Current systems. The SOM algorithm 
unravelled links between surface current variability and phytoplankton produc)vity during seasonal 
upwelling over the Agulhas Bank (South Africa) from daily surface ocean currents, sea surface 
temperature, and chlorophyll-a. The SOM paPerns extracted over this dynamically complex region, 
revealed four topologies/modes of the Agulhas Current (AC) system. These AC topologies were found 
to influence the circula)on and the phytoplankton produc)vity on the shelf. Consequently, the types 
of flows corresponding to produc)ve upwelling regimes and those responsible for reduced levels of 
produc)vity were iden)fied. The year-to-year variability of the SOM paPerns indicates that the 
high/low produc)vity events seem to be linked to the occurrence of extreme phases in climate 
variability modes. SOM shows also promising results for es)ma)ng biophysical indicators of change 
in the North Atlan)c. A recent applica)on of unsupervised clustering led to the automa)c detec)on 
of upwelling areas off the Somali coast and classifica)on of extreme events. These ML approaches 
can be applied to other oceanic regions, or at the global scale, and extended to other datasets, 
including hindcast modelling outputs and future climate projec)ons. This could provide new insights 
into the links between ocean parameters and how they are evolving as the Earth’s climate changes. 
 



 
Imaging the Earth’s Interior with Machine Learning 
Dr Andrew Valen2ne 
Assistant Professor  
Department of Earth Sciences 
Durham University 
 

 
Earth imaging is one of the classic problems of geophysics: how do we “look inside” the planet and 
understand its structure, composi)on and processes? Confined as we are to the Earth’s surface, we 
must extract informa)on from geophysical datasets, and use these to construct and constrain our 
state of knowledge. However, doing so is challenging: we must o\en work with data that is limited in 
its scope, quan)ty or quality, and we typically cannot isolate the feature or process of interest from 
the wider Earth system. 
  
As such, the growth of ‘machine learning’ (ML) offers much poten)al: the field promises new 
techniques and tools that are designed to extract informa)on from complex data. Many studies have 
sought to introduce ML-inspired or ML-assisted methods into geophysical imaging, with applica)ons 
targe)ng data processing, model parameterisa)on, regularisa)on, physical simula)on, and the 
formula)on of the imaging problem itself. In this talk, I will survey this range of opportuni)es, and 
show results from recent studies that draw on ML concepts and ideas. I will also seek to highlight 
some par)cular characteris)cs of the imaging problem that influence how and where ML ideas should 
be applied. 
 



 
Training deep learning models with limited labelled data for 
seismic monitoring at volcanoes and glaciers 
Dr Sacha Lapins 
Leverhulme Early Career Fellow 
School of Earth Sciences 
University of Bristol 

 
Training deep learning models for new monitoring se`ngs and data types can be challenging. 
Manually curated or labelled target data are o\en scant or unavailable, and exis)ng pre-trained 
models may be unsuitable or non-existent for the types of seismicity (e.g., non-tectonic) and 
instrument data (e.g., from fibre op)c sensing) that require processing. In this talk, I present two case 
studies where effec)ve deep learning seismic signal processing models have been trained using 
limited or no labelled data. First, I present the use of transfer learning to improve seismic phase arrival 
‘picking’ performance on data recorded by a network deployed at Nabro volcano in Eritrea. Nabro 
erupted without warning in June 2011 and had never undergone any previous seismic monitoring 
prior to the deployment of this temporary network shortly a\er erup)on onset. The transfer learning 
model exhibits significant performance improvements over its base model (GPD), as well as another 
comparable pre-trained deep learning model (PhaseNet) and an exis)ng manually compiled seismic 
catalogue. Approximately 34,000 events are detected across the full 14-month deployment, revealing 
the presence of fluids, faults, and magma ‘recharge’ at this volcano. Following this, I present the use 
of so-called ‘weakly supervised’ learning to suppress strong random instrument noise in data 
recorded by a Distributed Acous)c Sensing (DAS) array deployed on an Antarc)c glacier. DAS datasets 
are par)cularly challenging to analyse or label as they have high temporal and spa)al sampling 
density, leading to very large data volumes that make manual cura)on infeasible. The demonstrated 
approach requires only noisy data and maps random noise to a chosen summary sta)s)c, such as the 
distribu)on mean, median or mode, whilst retaining the true underlying signal, greatly enhancing the 
signal-to-noise levels of microseismic icequake events for subsequent detec)on (for which I present 
another model, trained using only ‘sparse’ labels). 
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The Bri)sh Geological Survey has been developing electrical resis)vity imaging and monitoring for a 
range of geoscience applica)ons for 30 years. The workflow required to transform geoelectrical 
measurements into an understanding of the subsurface structure and processes under inves)ga)on 
comprises several key stages, all of which require some degree of expert input to achieve the best 
results. This is due to inherent aspects and limita)ons of the underlying physics, the inverse problems 
that must be solved, or the challenges of maintaining instrumenta)on in the field. During the last 
decade, working in collabora)on with students and university partners, we have explored 
applica)ons of machine learning and related techniques to assist with data preprocessing, inversion, 
and analysis and classifica)on of the resul)ng geophysical images. 

We have explored a variety of supervised and unsupervised clustering approaches to detect 
interfaces, classify heterogeneity, analyse complementary geophysical data, and iden)fy hydrofacies 
in 4D resis)vity models. We have also used clustering methods to iden)fy problema)c electrodes and 
demonstrated how principal component analysis control charts can detect short circui)ng caused by 
connector damage. Other image segmenta)on methods combined with Kalman filters have been 
used to track tracers in monitoring experiments, and an inversion framework based on Ensemble 
Kalman filters has been used to image subsurface resis)vity with uncertainty quan)fica)on. Solving 
the inverse problem in the presence of electrical anisotropy is the focus of our most recent work. The 
underlying discre)sed par)al differen)al equa)on is recast in the form of weights of convolu)onal 
layers in a neural network. This allows it to be solved extremely quickly on GPUs / Ar)ficial Intelligence 
processors using AI so\ware libraries, which automa)cally calculate the sensi)vi)es and provide 
op)misa)on methods to perform the inversion. We are using a latent diffusion model approach, 
which can be taught to incorporate representa)ve geological priors. 



 
Self-supervised seismic denoising: Deep learning without 
labels 
Dr Claire Birnie 
Research Scien)st 
Physical Sciences & Engineering 
King Abdullah University of Science and Technology (KAUST) 

 
Deep learning has revolu)onized almost every field of science. However, tradi)onal deep learning 
procedures are o\en supervised requiring a ground truth label that is used to train the network. In 
the field of geophysics, this label is o\en unobtainable, with the ground truth remaining unknown. 
One approach to s)ll leverage deep learning in geophysics is to implement self-supervised methods, 
where the available data represents both the input and label for training a neural network. Given the 
example of noise suppression, in this presenta)on, I will illustrate how blind-spot, and subsequent 
blind-mask, networks can be u)lised for the suppression of both random and coherent noise. 
Furthermore, I will introduce how we can exploit methods from the field of explainable ar)ficial 
intelligence in order to design the op)mum blind-mask, resul)ng in tailored noise suppression 
algorithms that require no clean training targets. 
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Seismic modelling and monitoring of CO2 storage in geologic reservoirs  
Adewunmi Abdul1, Tarje Nissen-Meyer1 and Mike Kendall1  
1University of Oxford, England, United Kingdom 
 
Abstract  
Seismic data collected in vast amounts over a long period of )me enables detailed characteriza)on 
of CO2 migra)on within reservoir units; such data lends itself well to machine-learning techniques. 
This research aims to combine the knowledge acquired from the numerical modelling of wave 
propaga)on with machine learning in order to understand how leakage of sequestered CO2 into 
ambient rock forma)ons manifests itself in seismic data.   
 We outline a methodology that simulates the corresponding waveform from a large range of 
structural scenarios arising from varia)ons in the clas)c rock and fluid proper)es obtained from 
similar CO2 monitoring works done by several other authors and extract a training example from each 
simula)on for neural network using condi)onal encoder-decoder design. Some of these examples 
will be kept as a valida)on set during training and another as a test set to assess the performance of 
the trained network. Ul)mately, the sensi)vity of seismic waveforms to proxies such as thickness 
(reservoir, overburden, CO2), reservoir heterogeneity, velocity and CO2 satura)on for leakage 
scenarios will be analyzed. The knowledge gained from such techniques will then be extended to 
)me-lapse seismic data such as in the Utsira forma)on of the Sleipner field, North Sea where a large 
amount of CO2 is being sequestrated; thereby conver)ng signals into meaningful informa)on. Our 
work will enable further research direc)ons such as inves)ga)ng the value of poroelas)c over 
acous)c media (which will be used in this study) in imaging the presence and migra)on of injected 
CO2, using passive seismic method for monitoring and the injec)on of CO2 into reservoirs containing 
a mixture of gas, oil and brine as opposed to the single-fluid injec)on into saline aquifer of this study.  
  
References  
Moseley, B., Nissen-Meyer, T., & Markham, A. (2020). Deep learning for fast simula)on of  seismic 
waves in complex media, Solid Earth, 11, 1527–1549,  hPps://doi.org/10.5194/se-11-1527-2020. 
  
Carcione, J., Pico`, S., Gei, D., & Rossi, G. (2006). Physics and seismic modelling of monitoring CO2 
storage, Pure Appl. Geophys.,163, 175–207. 
 
 
 
 
 
 
 
 
 



Introducing Conceptual Geological Prior Informa7on into Bayesian 
Tomographic Imaging 
Hugo Bloem1, Andrew Cur=s1, Daniel Tetzlaff2 

1School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom 
2Westchase So\ware Corpora)on, Houston, United States of America 
hugo.bloem@ed.ac.uk 
 
Abstract Text 
Geological process models typically simulate a range of dynamic processes to evolve a base 
topography into a final 2-dimensional cross-sec)on or 3-dimensional geological scenario. In principle, 
process parameters may be updated to bePer align with observed geophysical or geological data; 
however, it is hard to find any process model realisa)ons that give good fits to all observa)ons if data 
sets are complex and sparse in space (and hence )me) because the simula)ons are typically chao)c}. 
Alterna)vely, geophysical probabilis)c tomographic methods may be used to es)mate the family of 
models of a target subsurface structure that are consistent both with informa)on obtained from 
previous experiments and with new data (the Bayesian posterior probability distribu)on). However, 
this family seldom embodies geologically reasonable images. We show that the posterior distribu)on 
of tomographic images obtained from travel )me data can be fully geological by injec)ng geological 
prior informa)on into Bayesian inference, and that we can do this near-instantaneously using trained 
Mixture Density Networks (MDNs). We invoke two geological concepts as prior informa)on about the 
deposi)onal environment of an imaged target structure: a braided river system, and a set of marine 
parasequences, each parameterised by a Genera)ve Adversarial Network. Data from a target 
structure can then be used to infer the image parameter values using either geological concept using 
MDNs. Our MDN solu)ons closely resemble those found using expensive Monte Carlo methods, and 
while the use of incorrect geological conceptual models provides less accurate results the mean 
structures s)ll approximate the target. We also show that a classifier neural network can infer the 
correct geological conceptual model. So in summary, geological prior informa)on significantly 
enhances geophysical tomography, imposing even incorrect geological prior informa)on may s)ll find 
geophysical tomographic images that resemble the true image, and in principle the correct geological 
conceptual model for an area can be inferred directly from geophysical data. 
 
 
 

 
 
 
 
 
 
 

Figure 1: Inversion results using geological prior information. True model is shown on the left overlain with the source and 
receiver locations indicated by triangles. Posterior mean and posterior standard deviation are shown in the middle and right 
column. Top row represents results obtained using mixture density networks, bottom row using Markov chain Monte Carlo. 
Note that the former results took a fraction of the inference time compared to the latter. 



3D and Time-Dependent Varia7onal Bayesian Full Waveform Inversion 
Andrew Cur=s & Xin Zhang 
University of Edinburgh, Edinburgh, U.K. 
andrew.cur$s@ed.ac.uk 
 
Abstract  
Seismic Tomography is a method to image the Earth’s subsurface. In order to bePer interpret the 
resul)ng images it is important to assess imaging uncertain)es, but this is hard to achieve. Monte 
Carlo random sampling methods are o\en applied for this purpose but the ‘curse of dimensionality’ 
makes them computa)onally intractable for high-dimensional parameter spaces. To extend 
uncertainty analysis to larger systems, varia)onal inference methods developed in the machine 
learning community are introduced to seismic tomography. In contrast to random sampling, 
varia)onal methods solve an op)miza)on problem yet s)ll provide probabilis)c results.  
Varia)onal inference is applied to solve two types of tomographic problems: full waveform inversion 
(FWI), and )me-dependent (known as 4D) FWI. Three different varia)onal methods are tested: 
automa)c differen)al varia)onal inference (ADVI) and both determinis)c and stochas)c versions of 
Stein varia)onal gradient descent (SVGD). ADVI provides a robust mean velocity model but biased 
uncertain)es, whereas determinis)c SVGD produces an accurate match to the results of Monte Carlo 
analysis, but at frac)on of the computa)onal cost. SVGD is significantly easier to parallelize, and for 
very large problems can be run in minibatch mode which is impossible using Monte Carlo methods 
without incurring probabilis)c errors. Stochas)c SVGD is shown to be the only method that may be 
capable of providing useable results for 3D FWI problems. This method is therefore extended to )me-
dependent monitoring problems of the type expected to be encountered in CO2 of Hydrogen storage 
applica)ons. Varia)onal methods thus have the poten)al to extend probabilis)c analysis to other 
Geophysical inverse problems and to higher dimensional tomographic systems than is currently 
thought possible. 
 

 
 

Figure:  (a) 3D synthetic model. (b) Uniform prior probability density function. (c),(d),(e): Respectively the mean, 
standard deviation and relative error (difference between true and mean models, divided by the standard deviation) across 
central vertical slice in x-z plane. (f) Results of an interrogation problem to answer the question, “How large is this storage 
reservoir?” given probabilistic FWI results, using two different wavelet central frequencies: black line indicates the correct 
value. 

 
 



 
 



Using neural networks to accelerate the single step ambient 
noise tomography forward problem enabling rapid 3D Monte 
Carlos Markov Chain inversions. 
Joseph Fone1, Nicholas Rawlinson1 
1Bullard Labs – Department of Earth Sciences, University of Cambridge, Cambridge, UK 
jwf39@cam.ac.uk 
 
Abstract Text  
Ambient noise tomography (ANT) is a powerful tool for passively imaging regional scale structures in 
the crust and upper mantle. It exploits the ambient noise wavefield to produce measurements of 
surface wave dispersion between seismic stations. Once inter-station dispersion measurements are 
obtained the inversion for ANT is conventionally done in two steps. Firstly, 2D tomography is 
performed to produce sets of phase or group velocity maps. Then these maps are sampled at discrete 
points to obtain local pseudo-dispersion curves which are then individually inverted for and then 
joined into a final 3D model. The issue with the two-step method is that in performing these 
inversions separately there is no correlation between the lateral inversions meaning that in certain 
locations of poor ray path coverage there can be very low correlation between the phase or group 
velocity pseudo-dispersion curves which can contain spikes and non-physical anomalies which will 
be reflected as artefacts in the final model. The single step ambient noise tomographic inversion 
deals with these problems by inverting directly for 3D shear wave velocity structure. The issue is that 
the forward problem is computationally expensive as it requires taking a 3D shear wave velocity 
model, doing dispersion calculations to get maps of phase or group velocity followed by multiple uses 
of an Eikonal solver to produce inter-station travel times. In this study we use a set of neural networks 
to approximate this forward problem for a network in northern Borneo training them on synthetic 
data. The new forward approximator shows a 100 time speed up which enables us to perform a fast 
3D Monte Carlos Markov Chain inversion of real data from northern Borneo which is compared to a 
model from the two-step inversion. These results show promise that neural networks can help with 
some compute problems within seismology and geophysics.   



 



Neural network-based modelling of hydrology in borehole strain 
observa7ons 
Jessica C. Hawthorne 
Department of Earth Sciences, University of Oxford, Oxford, United Kingdom 
jessica.hawthorne@earth.ox.ac.uk 
 
Abstract Text  
 
Borehole strainmeters were designed to record the tectonic deforma)on of the Earth with 
remarkably high precision: around 0.1 nanostrain.  However, the instruments do not just record 
tectonics; they record all signals very precisely, and the largest signals in the data are usually not 
tectonic in origin. The largest signals are o\en )dal deforma)on, responses to an atmospheric 
pressure load, and responses to hydrological loads.  Hydrological loads have been par)cularly 
challenging to model because the responses are nonlinear.  For instance, the deforma)on caused by 
rainfall in June, when the ground is drier, may differ from the deforma)on caused by rainfall in 
January, when the ground is wePer and colder. 
 
In this study, I model some of the nonlinear hydrology-induced deforma)on using neural networks, 
so that the induced deforma)on is a nonlinear func)on of past rainfall, pressure, temperature, and 
)me of year.  I test the approach with several Plate Boundary Observatory strainmeters in the Pacific 
Northwest, using ECMWF weather parameters as input.  The current model capture more than 50% 
of the varia)on in deforma)on rate on )mescales of a few to 10 days.  As we must limit the number 
of free parameters, this model considers 10-20 linear combina)ons of past rainfall, allowing for 
varia)on in the load’s )ming.  The model then mul)plies the rainfall combina)ons by a nonlinear 
func)on of past rainfall, pressure, temperature, and )me of year.  The inferred weights provide some 
informa)on about the physics of hydrological loading; more recent rain loads the strainmeter more, 
and strain recovers when the weather is dry.  However, the moderate success of the model is likely 
more useful for tectonic observa)ons.  It suggests that we can remove at least half the non-tectonic 
“noise” with a quickly trained nonlinear model.   

 



Machine Learning and the Mogi model: Improving the efficiency of 
ensemble-based methods for volcano deforma7on analyses 
MaLhew Head1, Patricia M. Gregg1 
Department of Earth Science & Environmental Change, University of Illinois at Urbana-Champaign, 
IL, USA 
mshead@illinois.edu 
 
Abstract Text  
Geode)c observa)ons are key for assessing the unrest status of volcanoes worldwide, providing 
cri)cal informa)on about magma)c systems and the poten)al for magma migra)on and erup)on. 
Analysing these signals relies on a robust data-model framework. One such approach is the Ensemble 
Kalman Filter (EnKF; Evensen, 2003), a data assimila)on method that has been adapted for analyses 
of volcanic deforma)on (Gregg & Pe`john, 2017). The EnKF sequen)ally assimilates and inverts 
geode)c observa)ons, ‘nudging’ model parameters to reduce the model-observa)on misfit with each 
itera)on. We employ the Finite Element Method (FEM) to construct thermomechanical models of 
volcanic regions, providing the necessary flexibility to incorporate complex 3D geometries and 
material heterogeneity. However, these simula)ons are computa)onally expensive when 
incorporated into the EnKF workflow, with an ensemble of >200 model states taking several hours to 
evaluate. 
Here, we aim to reduce the computa)onal cost of the EnKF-FEM workflow by using regression 
machine learning algorithms (MLAs), focusing on reducing the number of model states that need to 
be evaluated by the FEM. We start by using the ‘Mogi’ deforma)on model (Mogi, 1958), a simple 
analy)cal expression that calculates the displacement field due to a point source. The Mogi model 
takes 5 input parameters and produces three-component deforma)on data (Ux, Uy, and Uz) on a 51 
x 51 spa)al grid, totalling 7803 observa)ons. We employ a tuneable nearest-neighbour approach to 
iden)fy model states that occupy a ‘similar’ parameter space, using MLAs to predict the resultant 
displacements. The MLAs are then updated with new model results a\er each itera)on of the EnKF. 
While MLAs do not improve computa)onal efficiency with the Mogi model, it has significantly 
reduced complexity compared to that of an FEM, providing a simple playorm to test different 
approaches. 
 
Abstract References  
Evensen, G. (2003). The Ensemble Kalman Filter: Theore)cal formula)on and prac)cal 
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Earthquake detec7on and phase picking for nodal arrays in Indonesia 
with machine learning 
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Umar3, Shengji Wei2 
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karen.lythgoe@ed.ac.uk 
 
Abstract Text  
Machine learning detec)on and phase picking of earthquakes has vastly sped up the )me taken to 
produce detailed earthquake catalogues at large seismic arrays at two loca)ons in Indonesia. We use 
a deep learning model trained on global data – the EQTransformer algorithm (Mousavi et al 2020). 
Our first region is Lombok, where the month-long dataset contains mul)ple M6+ mainshock and 
a\ershock sequences. The accuracy of the detec)on result, according to our manual evalua)on, is 
es)mated to be around 90%, which is acceptable because the majority of the false posi)ve events 
are discarded during the subsequent  associa)on process. We find that EQTransformer finds over five 
)mes more events compared to the standard catalogue which was produced using a tradi)onal 
STA/LTA detector, including detec)ng several M5+ a\ershocks in the immediate coda of a M6.9 event 
which were originally missed. However, it misses the largest M6.9 events likely reflec)ng the rela)ve 
lack of larger magnitude events in the training data. Pick quality is high, with a mean difference of 0s 
and standard devia)on of 0.2s for both P and S, compared to picks by analysts. The new catalogue 
allows us to inves)gate earthquake triggering in more detail, and detect many more repea)ng event 
families. 
 
We also use transfer learning to op)mise the deep learning model for a dense nodal array dataset, 
comprising of over 120 sta)ons, along the Sumatran Fault in Aceh, Sumatra. The 18-months of data 
is generally noisy and there are ini)ally many false detec)ons. We first apply the neural network to 5 
weeks of data. These phase picks are then quality controlled, and the best picks are used to re-train 
the network. Using transfer learning approximately 10,000  high-quality events are detected and re-
located. The detected events include local and regional earthquakes, in addi)on to low-frequency 
earthquakes that may be indica)ve of slow slip and have never been detected in this region before. 
 
Abstract References  
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake 
transformer—an aPen)ve deep-learning model for simultaneous earthquake detec)on and phase 
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TerraPINN: solving the wave equation with approximately 
axisymmetric physics informed neural networks  
Jack B. Muir, Tarje Nissen-Meyer 
Department of Earth Sciences, University of Oxford, Oxford, UK 
jack.muir@earth.ox.ac.uk 
 
Abstract Text  
Deep neural networks have revolu)onised our ability to process and classify big data. In seismology 
in par)cular, neural network solu)ons now outperform human analysts in accuracy on standard 
observa)onal tasks, while allowing orders of magnitude more data to be processed1. This revolu)on 
was only possible, however, because of the large, high quality labelled datasets accrued by 
researchers over many decades. As we move towards the next genera)on of geophysical machine 
learning, we are beginning to tackle problems where such labelled data is not available. One of the 
most pressing challenges is the solu)on of the forward seismic wave equa)on using deep learning. 
Ideally, by significantly accelera)ng exis)ng solvers, we would be able to generate much larger 
ensembles of seismic wavefield data through realis)c media. However, because the forward solu)on 
is intrinsically expensive, we do not have large volumes of training data. The physics informed neural 
network (PINN) framework offers a way to circumvent this problem2. Instead of training on synthe)c 
data, we propose solu)ons and then penalise their misfit to the wave equa)on. Early inves)ga)ons 
of PINNs have shown much promise, however they have so far struggled to solve mul) scale 
problems, such as the seismic wave equa)on. In TerraPINN, we propose a hybrid approach between 
PINNs and tradi)onal supervised machine learning. Recognising the approximate axisymmetry of 
seismic wave propaga)on and taking inspira)on from the success of the factored form of the eikonal 
equa)on in calcula)ng first arrivals3, we first fit a reduced dimension radial wavefield in a laterally 
homogeneous and isotopic medium using a tradi)onal supervised machine learning framework. We 
then expand azimuthally and train for a correc)on operator using PINNs. The combined network size 
has 2 orders of magnitude fewer parameters and trains 10x faster than an equivalent naive PINN 
formula)on in 2D acous)c test cases. 
 
Abstract References  
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Automa7c waveform earthquake loca7on using convolu7onal neural 
networks 
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1 Advanced Research Compu)ng, Durham University, Durham, UK 
2 School of Earth and Environment, University of Leeds, Leeds, UK 
* andy.nowacki@leeds.ac.uk 
 
Abstract Text 
Earthquakes pose risks and provide useful informa)on about natural and human-induced processes.  
For these reasons, and due to ever-larger volumes of seismic data, it has become increasingly 
necessary and rou)ne to detect and locate earthquakes automa)cally, usually using a variety of 
heuris)cs-based approaches and localisa)on techniques. There are limita)ons, however.  For 
example, single- or mul)channel triggers usually require parameters to be tuned to the dataset.  
Likewise, migra)on techniques are computa)onally expensive.  Some of these limita)ons have been 
addressed over recent years using data-driven approaches such as deep learning, but o\en this relies 
on sufficient knowledge of the seismic wave speed of the subsurface. Here we present work where 
waveforms from mul)ple seismic recorders are used simultaneously and directly to locate 
earthquakes with no intermediate picking or loca)on step, making use of the full waveform and 
without a priori knowledge of the regional velocity structure. 
 
We use a convolu)onal neural network (CNN) which feeds into a mul)-layer perceptron, similar to 
van den Ende & Ampuero (2020), to predict the 3D earthquake loca)on by training its parameters on 
data from 17 three-component seismometers from 4 to 25 July 2019, recording the Ridge Crest 
earthquake sequence.  We use a window of 10 s around the earthquake origin )me and include the 
posi)on of each channel as addi)onal input to the network.  This setup yields loca)ons from the test 
dataset within a few km of the catalogue loca)ons a\er only 20 epochs of training on a single CPU.  
We test the transferability of the network by applying it to a different dataset with different sta)ons, 
and explore the ability of it to cope with missing sta)ons, including by using a fully-convolu)onal 
network.  The results are encouraging and demonstrate that data-driven methods to locate 
earthquakes are likely to become increasingly rou)ne and important. 
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Abstract Text  
As the field of numerical geodynamic modelling has advanced, we now rou)nely see simula)ons 
which reproduce Earth-like structures such as the deep, seismically observable Large Low Velocity 
Provinces (LLVPs), and upwelling features, namely mantle plumes. Naturally, we now want to 
interrogate these modelled structures to bePer understand their proper)es and allow for comparison 
against observa)ons of their terrestrial counterparts. In par)cular, it is of interest to iden)fy and 
interrogate mantle plumes to bePer understand their temperature structure, radial velocity, 
composi)on and longevity. As such we need a method by which mantle plumes can be objec)vely 
iden)fied within geodynamic models to make studies reproducible and to allow efficient post 
processing of model results. Building on previously described methods (Hassan., et al, 2015) we 
present a workflow for iden)fying mantle plumes produced in geodynamic simula)ons carried out 
using the 3D mantle convec)on code TERRA. The workflow incorporates unsupervised machine 
learning algorithms such as K-means and DBSCAN to first iden)fy regions with plume-like proper)es 
and then separate them into individual plumes. This work will be used as part of Mantle Circula)on 
Constrained (MC2) project to allow for comparisons against es)mates of plume fluxes, mantle 
poten)al temperatures and other inferred proper)es (MaPhews., et al, 2021). We demonstrate the 
effec)veness of the algorithms by tracking plumes over the course of a simula)on and report on how 
they evolve.  
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Abstract Text  
The Earth’s geomagnetic field arises from the constant motion of the fluid outer core. By assuming 
that these motions are advection-dominated, rather than diffusion, one can relate 
this motion at the core surface to the secular variation of the geomagnetic field, providing an 
observational approach to understanding the motions in the deep earth. Existing methods 
predominantly employ global inversions, assuming large-scale solutions where all observed 
secular variations are attributed to the flow. In contrast, this work introduces a novel technique 
based on machine learning, specifically Physics-Informed Neural Networks, to perform local flow 
inversions. Our approach incorporates a loss function comprising of both data loss and physics-
based loss, in which different flow assumptions can be swapped in and out when needed. This 
poster presents the set-up, underlying assumptions, and preliminary results of this methodology 
using Toroidal and Tangentially Geostrophic flow constraints. Furthermore, we discuss the 
technical and scientific next steps to advance this method as a powerful tool in understanding 
the dynamics of the Earth's core. 
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Abstract Text 
In geophysical experiments or surveys, recorded data are used to constrain target proper)es or 
dynamics of the planetary subsurface, oceans, cryosphere or atmosphere. The exact choice of 
experimental design controls how much, and precisely what informa)on is transferred to target 
variables. Typical design parameters that can be varied are source and sensor types and loca)ons, 
and the choice of modelling or data processing methods to be applied to the data. These may all be 
op)mised subject to various cost constraints. Bayesian experimental design methods quan)fy and 
maximise informa)on about targets of interest. This cons)tutes a macro-op)misa)on problem in 
which we design the set of Bayesian inference problems that we might encounter post-experiment.  
 
We introduce novel varia)onal design methods that leverage func)onal approxima)ons to 
probability distribu)ons and model-data rela)onships. These methods have gained prominence in 
the machine learning community to op)mize the design of experiments. We show that they enable 
accurate es)ma)on of model parameters, or allow experiments to be focused on answers to specific 
ques)ons about the system under inves)ga)on.  
 
Our varia)onal methods rely on neural network approxima)ons to probability func)ons, which need 
to be trained similarly to many other machine learning approaches. We will present how mixture 
density networks and mutual informa)on lower bounds can be used for the design of focused 
experiments and surveys in geophysics. 
  
To illustrate the advantages of these methods, we show that they enable passive seismological 
surveys to be designed to locate earthquakes op)mally, and ac)ve seismic surveys to be designed 
specifically to constrain CO2 satura)on in subsurface storage scenarios. These applica)ons 
demonstrate that op)mal designs can vary substan)ally depending on the objec)ves of interest. Full 
details are available in Strutz & Cur)s (2023). 
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A climate emergency was acknowledged in 2021 (IPCC, 2021) as greenhouse gas concentra)ons in 
the atmosphere are con)nually rising and are a catalyst for global warming. A key factor of the 
accelera)on of atmospheric greenhouse gases is fossil fuel combus)on; na)onal es)mates indicate 
that 38% of atmospheric CO2 comes from road transporta)on (BEIS, 2019). To gain accurate local data 
and a bePer understanding of the sector’s impact, a network of Raspberry Shake seismometers has 
been deployed across Greater Manchester, as part of a UKRI NERC-funded project “Listen to 
Manchester” (TwiPer: @listen2mcr). These seismometers possess high sensi)vity to high frequency 
anthropogenic noise, making them suitable for capturing local seismic signatures. 
 
The urgent need to comprehend and predict urban traffic paPerns stems from the alarming levels of 
atmospheric CO2, which have reached their highest point in the last 650,000 years (Lüthi et al. 2008), 
and the visible air quality improvements seen during the 2020 global pandemic. Understanding 
factors influencing air quality and traffic volume is essen)al for sustainable urban planning and the 
development of effec)ve transporta)on management strategies. 
 
In recent years, the applica)on of ar)ficial intelligence (AI) techniques in geosciences has gained 
aPen)on and has had posi)ve impacts on geoscience research. In this study, we employ AI algorithms 
to detect seismic signals associated with anthropogenic noise. By extrac)ng features from the power 
spectrum of the frequency domain, we predict urban traffic volumes along Manchester City Centre's 
Oxford Road corridor. 
 
Our research aims to provide valuable insights into the local dynamics of CO2 emissions and the 
influence of road travel, par)cularly when combined with air quality data. These insights will be vital 
for smart city development and advancing our understanding of climate change. The integra)on of 
AI techniques with geoscien)fic data holds immense poten)al to facilitate evidence-based decision-
making to mi)gate its detrimental effects. 
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Heat flow is an important physical observa$on in tradi$onal and transi$onal resource explora$on. The 
availability of direct measurements of heat flow is inconsistent across the globe, with rela$vely dense 
measurements in North America and Europe and sparser measurements elsewhere. Several geophysical and 
geological data sets and observa$ons may act as proxies for heat flow, however variability on small and large 
scales makes it challenging to correlate individual data sets to the heat flow measurements. Therefore, a 
mul$variate regression approach is sensible. Here we inves$gate the use of random forest regression 
techniques to predict terrestrial heat flow across the globe. 
 
We use random forest regressions to es$mate heat flow globally on a quarter-degree grid. Our training data 
set is made up of nearly 75000 measurements of heat flow provided in the Interna$onal Heat Flow Commission 
(IHFC) compila$on. The training uses up to 25 independent variables including depths to basement, Moho and 
asthenosphere, crustal type, Pn velocity (a proxy for Moho temperature), seismic velocity at the top of the 
asthenosphere, and proximity to surface thermal features. Our early random forest regression models were 
for the United States, where heat flow observa$ons are plen$ful, and the method was assessed using high-
resolu$on independent variables before we expanded the analysis to the rest of the globe.  
 
Owing to the high-quality data available, random forest regression models for the United States were the most 
successful, achieving R2 values of around 0.7 for hold-out model valida$on data. Global models achieved R2 

values between 0.55 and 0.65 depending on the data used for training. The difference in performance can be 
partly aaributed to the absence of some variables (e.g., the high-quality seismic based variables obtained from 
US Array studies) at the global scale. The most valuable independent variables for the random forest regression 
tended to be the more smoothly varying parameters; this is reflected by lower precision model predic$ons 
where observed heat flow is highest. These results suggest short-wavelength or local geological factors are s$ll 
important in areas with the highest heat flow. Given the repeatable method, ever-improving data compila$ons 
and well-understood limita$ons these results have value for resource explora$on, par$cularly where direct 
observa$ons are limited. 
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Abstract Text  
The use of machine learning methods for the automa)c detec)on of features in Ground Penetra)ng 
Radar (GPR) data became popular in the last years and is mainly applied to urban infrastructure or 
tree roots. These infrastructures such as pipes or rebar produce hyperbolic paPern in the radargrams 
which can be located with e.g. convolu)onal neural networks (CNN). Hyperbolic paPern are not 
limited to infrastructure datasets but appear also in data from archaeological sites, origina)ng from 
small stones or wooden structures (either natural or ar)ficial). In order to detect these features 
automa)cally, we trained a CNN (Re)nanet, Lin et al. 2017a,b) with GPR data from an archaeological 
site (Wunderlich et al. 2022). The average precision was 0.58 and more than 38000 hyperbola were 
detected. Subsequent automa)c velocity analysis of the detected hyperbola results in a 3D velocity 
model, which can be used e.g. for migra)on. The spa)al distribu)on of objects helps to improve the 
archaeological interpreta)on. Tests with other datasets showed high poten)al for the transfer of the 
trained Re)nanet to new data as long as the aspect ra)o of the figures stays the same. 
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Abstract Text  
Crater popula)ons are an important tool for understanding subsurface proper)es and the geological 
history of planetary bodies. Iden)fying, characterising and measuring impact craters on solid 
planetary surfaces, however, can be a difficult and )me-consuming task. Automa)c crater detec)on 
algorithms (CDA) based on machine learning are effec)ve alterna)ves to manual crater coun)ng, 
especially for small craters (La Grassa et al 2023). The laborious process of hand labelling makes it 
challenging and )me-consuming to build a fully labelled benchmark dataset for CDAs. Recent 
research on deep self-training offers a potent method for unsupervised or semi-supervised domain 
adapta)on, which involves an itera)ve process of predic)ng on the target domain and then taking 
the confident predic)ons as pseudo-labels for retraining (Rosenberg et al 2005). However, as pseudo-
labels can introduce unwanted noise, the self-training process poses a risk in assigning overconfident 
labels to incorrect detec)ons, resul)ng in error accumula)on over itera)ons. This paper proposes an 
auto-itera)ve, self-training system for automa)c crater detec)on based on YOLO (Redmon et al 2016) 
to detect unlabelled small craters. The pseudo-label selec)on metric includels a confidence threshold 
that varies with with crater size and a novel IOU-based ensemble learning module that combines 
detec)on results from mul)ple models [explain the key difference between models]. Validated on a 
manually labelled dataset of all-size craters in THEMIS images of Mars, the proposed method 
outperforms a state-of-the-art CDA (Benedix et al., 2020) and excels in standard self-training systems 
in terms of precision and recall. In general, the proposed self-learning approach generates reliable 
results in small crater detec)on in a user-friendly and efficient manner. 
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Abstract Text  
 
Geophysical inversions use observed data to es)mate proper)es of the Earth's interior, but they o\en 
pose non-linear and non-unique challenges. Bayesian inference provides a probabilis)c framework 
for solving inverse problems and enables quan)fica)on of uncertain)es in inversion results. Recently, 
varia)onal inference has emerged as an efficient alterna)ve to expensive Monte Carlo sampling 
methods, par)cularly for high-dimensional problems. By seeking the closest distribu)on to the 
unknown posterior distribu)on within a family of distribu)ons, varia)onal inference can yield a fully 
probabilis)c solu)on. However, defining expressive varia)onal families can significantly increase 
op)miza)on complexity. In this paper, we introduce a new method called Boos>ng Varia>onal 
Inference (BVI) to geophysics, which constructs a flexible approxima)ng family comprising all possible 
finite mixtures of simple component distribu)ons. Specifically, we use the Gaussian distribu)on as 
the mixture component due to its ease of training and fully parametric nature. Each component is 
sequen)ally trained using a greedy algorithm. We apply BVI to seismic travel )me tomography and 
full waveform inversion, comparing its performance with Monte Carlo and other varia)onal methods. 
The results demonstrate that BVI achieves both efficiency and accuracy while enabling the 
construc)on of an analy)c posterior expression. Consequently, importance samples can be obtained 
directly from each component. These samples represent part of the uncertainty informa)on and can 
be used to interrogate the subsurface structures efficiently. 
 
 
 


