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5G transmitter. Signal metrics (RSSI, SINR), GPS
coordinates, and tower metadata were recorded.
‘ Model
. . . o 40 \ =@= OURS [ANN]
The proposed pipeline included: e \ INNFS - IDW !
84l u + N = = W= Kriging "
. . . * ot e o v, 9 Criging .
= Preprocessing and filtering of raw de?ta. g b r\ N g e I DI SCUSS' O N
= Dronetelemetry - [Lat, Lon, Altitude ] S L B e Rk ey
. . < 30 47 * + % P T .. .y . .
= Network data - [rssi, sinr, rsrq, rsrp] g N~ . Yo T T~y Traditional geospatial interpolation struggles in
i i i i = &N . .
= Feature en.glneerlng to calculate distance, azimuth, E . —, —y vertical or sparse environments. The ANN
and elevation fror.n.tl?e tower. E model demonstrated adaptability to 3D,
" Afeedforward Artificial Neural Network (ANN) 20 directional signal characteristics, enabling
. . 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
trained on spatial and contextual features. Test Size Test Size reliable extrapolation. Simpler models faltered
splits (rgndpm, block, temporal) to test features. The feature-engineered ANN approach
generalisation. proved more robust and scalable, particularly
valuable for real-world 6G UAV applications
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exploring alternative NN architectures and adaptive flight paths to
Random Split Block Split enhance scalability and accuracy in real-time drone operations.
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Above shows how we may attempt to predict readings for
remaining flight paths based on known data. This can be applied
to drone delivery or surveying methods where paths need to be
e : updated depending on a variety of factors. Next, we will explore
flight paths” = — | windowed training data or autocorrelation. This will help when
' developing real time signal prediction for applications such as I CO NTACT
drone delivery networks or dynamic mapping. We may also use
this new information update predicted maps as pictured below.
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