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INTRODUCTION

The shift to drone-based services in 6G environments 
demands robust, altitude-aware cellular connectivity. 
However, existing 2D coverage models fail to capture 
signal variability in 3D space. This poses safety and 
reliability issues for UAV operations. The paper 
addresses these challenges by developing a method to 
generate 3D signal strength maps using drone-
collected data, feature engineering, and neural 
networks to enable more scalable and efficient signal 
prediction across complex environments.

METHODS

Two datasets were collected using drones flying pre-
defined paths (Rows and Spiral) around a controlled 
5G transmitter. Signal metrics (RSSI, SINR), GPS 
coordinates, and tower metadata were recorded. 

The proposed pipeline included:
▪ Preprocessing and filtering of raw data.

▪ Drone telemetry - [Lat, Lon, Altitude ]
▪ Network data - [rssi, sinr, rsrq, rsrp]

▪ Feature engineering to calculate distance, azimuth, 
and elevation from the tower.

▪ A feedforward Artificial Neural Network (ANN) 
trained on spatial and contextual features.

▪ The model was evaluated using various dataset 
splits (random, block, temporal) to test 
generalisation.

▪  Above is a test train split example. Below is the 
dataset we recorded across multiple planes, over 
an are where r = 100m

RESULTS

CONCLUSION

DISCUSSION

ANN consistently outperformed traditional methods (IDW, Kriging, 
Ensemble) across block, cross-layer, and time-series tests.

Median Absolute Error (MAE) remained lowest in ANN, especially in 
sparse or unseen areas.

Feature inclusion (distance, azimuth, elevation) significantly 
improved cross-layer predictions.

ANN showed resilience to input reduction and generalised well 
across different spatial and temporal splits.

This work introduces a neural network-based approach for 3D 
signal mapping using drone-collected data. By integrating spatial-
temporal learning and engineered features, the model achieves 
accurate predictions with sparse data. Future directions include 
exploring alternative NN architectures and adaptive flight paths to 
enhance scalability and accuracy in real-time drone operations.

Above shows how we may attempt to predict readings for 
remaining flight paths based on known data. This can be applied 
to drone delivery or surveying methods where paths need to be 
updated depending on a variety of factors. Next, we will explore 
windowed training data or autocorrelation. This will help when 
developing real time signal prediction for applications such as 
drone delivery networks or dynamic mapping. We may also use 
this new information update predicted maps as pictured below.

Traditional geospatial interpolation struggles in 
vertical or sparse environments. The ANN 
model demonstrated adaptability to 3D, 
directional signal characteristics, enabling 
reliable extrapolation. Simpler models faltered 
in unobserved regions or with reduced input 
features. The feature-engineered ANN approach 
proved more robust and scalable, particularly 
valuable for real-world 6G UAV applications 
where dense measurements are impractical.

We saw interesting relationships emerge 
between coordinate-based prediction of tower 
property-based predictions. In the future we 
would like to explore how these relationships 
may affect accuracy, such as which features 
are more important in predicting RSSI. This 
will require additional datasets.
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