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Abstract
Survey calibration methods modify minimally unit-level sample

weights to fit domain-level benchmark constraints (BC). This allows
exploitation of auxiliary information, e.g. census totals, to improve
the representativeness of sample data (addressing coverage limitations,
non-response) and the quality of estimates of population parameters.

Calibration methods may fail with samples presenting small/zero
counts for some benchmark groups or when range restrictions (RR),
such as positivity, are imposed to avoid unrealistic or extreme weights.
User-defined modifications of BC/RR performed after encountering
non-convergence allow little control on the solution, and penaliza-
tion approaches modelling infeasibility may not guarantee convergence.
Paradoxically, this has led to underuse in calibration of highly disag-
gregated information, when available.

We present an always-convergent flexible two-step Global Optimi-
sation (GO) survey calibration approach. The feasibility of the cal-
ibration problem is assessed, and automatically controlled minimum
errors in BC or changes in RR are allowed to guarantee convergence
in advance, while preserving the good properties of calibration esti-
mators. Modelling alternatives under different scenarios, using various
error/change and distance measures are formulated and discussed. The
GO approach is validated by calibrating the weights of the 2012 Health
Survey for England to a fine age/gender/region cross-tabulation (378
counts) from the 2011 Census in England and Wales.

Keywords Calibration estimation; Calibration weighting; Design-based
inference; Generalised regression; Penalized calibration; Raking; Ridge cali-
bration; Range restrictions; Survey weighting
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1 Introduction

Survey calibration incorporates auxiliary information to a sample in two
closely related ways: weighting and estimation. Calibration weights make a
sample consistent with auxiliary information (e.g. census population totals)
while in general respecting the initial sample design (Deville and Särndal,
1992). Resulting calibration estimates of population parameters (e.g. totals)
improve direct sample estimates (e.g. Horvitz-Thompson). Survey calibra-
tion methods can be also applied to adjust for non-response or coverage limi-
tations, and to outlier detection (Särndal, 2007). The internal consistency of
administrative data can be intrinsically guaranteed with survey calibration,
since it may provide a common degree of agreement between estimates from
multiple samples of the same population (Wu and Lu, 2016).

Calibration estimates were initially introduced for finite population totals
or averages of either categorical or continuous variables. Example methods
are the generalised regression (GREG) and raking estimators (Deville and
Särndal, 1992; Singh and Mohl, 1996). Calibration estimates were later de-
veloped for variance and bilinear parameters (Théberge, 1999), quantiles and
ratios (Särndal, 2007). Given an initial value for frequency tables with no
zeroes, if either auxiliary cells or marginal counts are known, the correspond-
ing post-stratification problems can also be modelled using survey calibration
(Deville and Särndal, 1992). In this context, raking ratio estimates can be
obtained recursively using the Iterational Proportional Fitting (IPF) algo-
rithm (Wu and Lu, 2016), which dates back to (Deming and Stephan, 1940).

Survey calibration methods are design-based: the primary source of ran-
domness is the probability of the sample design (Särndal, 1978). The model-
based approach equivalent to calibration estimation is the theory of regres-
sion estimation (Fuller, 2002). It requires models of the population to in-
corporate auxiliary information, and it neither necessarily creates calibration
weights nor guarantees to the same extent the internal consistency. Nonethe-
less, some regression estimators can be obtained as calibration estimators
(Särndal, 2007). For example, the GREG calibration estimate of population
totals is assisted by a linear effects model, and the raking ratio estimation in
frequency tables (using IPF) is assisted by log-linear and logistic regression
models (Bishop, 1969; Fuller, 2002). Moreover, all calibration estimators for
linear population parameters are asymptotically equivalent to the GREG
estimator (Deville and Särndal, 1992).

Survey calibration methods search for (real-valued) calibration weights
that: i) satisfy a set of benchmark constraints (BC) or calibration equations,
and, in most cases ii) are close to initial weights. Therefore, calibration es-
timators are: i) design-consistent, and ii) (asymptotically) design-unbiased
(Deville and Särndal, 1992; Fuller, 2002; Särndal, 2007). In general, the use
of auxiliary information in form of BC allows for bias and/or variance reduc-
tion in population-level estimates. The bias in calibration estimators is kept
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small by staying close to initial (design) weights through the minimisation of
a distance measure. Some calibration methods use distances with undesir-
able effects, that are likely to inflate the bias and/or variance: GREG may
produce negative weights, and raking extreme ones. Outliers, small domain
estimation or the estimation of non-linear population parameters are also
likely to produce extreme and highly variable weights (Théberge, 2000; Wu
and Lu, 2016). Range restrictions (RR) on weights are imposed in practice
in order to avoid weights taking unrealistic or extreme values. These can be
imposed directly on weights or through the function measuring the distance
to initial weights (Singh and Mohl, 1996).

Failure of survey calibration methods may occur with real data (Sautory,
1991; Tanton et al., 2011). In fact, BC may have no exact solution (zero
error), either considered solely or in combination with RR on weights (Singh
and Mohl, 1996). This can be due to: the sample not being representative
(enough) of every non-void class in the cross-classified BC; the RR being
too tight; the BC forming an inconsistent system of equations, due to their
derivation from differing data sources or from data with added noise as a
result of statistical disclosure control procedures (Tanton et al., 2011). In
addition, calibration algorithms may be unstable for too many BC or when
multi-collinear survey variables are being benchmarked (Sautory, 1991; Rao
and Singh, 1997). The existence of a solution to the range-restricted survey
calibration problem was studied theoretically in (Théberge, 2000).

Faced with non-convergence of standard algorithms in practice, alterna-
tive approaches have been proposed: non-modelling heuristics and penalized
calibration, also known as ridge calibration. Heuristics typically used in-
clude: broadening the categorisation of benchmark variables, modifying the
benchmarking values, loosening the RR on weights, or even deleting some
BC (Sautory, 1991; Bankier et al., 1992). In (Tanton et al., 2011), an upper
threshold on the total absolute error (TAE) in BC is used to accept non-
convergent solutions satisfying RR, with no further control for error in BC.
Penalized calibration allows a certain degree of relaxation in each BC, being
controlled by costs (or tolerances), whilst still providing approximately un-
biased and asymptotically design-consistent estimators. Penalized versions
of GREG with RR can be found adaptively adjusting the set of tolerances
on BC errors in (Rao and Singh, 1997) and addressing its global minimi-
sation in (Wagner, 2013). These methods are asymptotically equivalent
to the GREG calibration method (Théberge, 2000), and have regression-
based counterparts (Beaumont and Bocci, 2008). However, non-convergence
is still reported by penalization methods, being possible even for loose RR
on weights.

This paper proposes a Global Optimisation (GO) two-step approach to
range-restricted survey calibration. First, the problem feasibility is guaran-
teed by optimally modifying the BC and (for the first time) RR, if needed
and in a controlled manner. Second, the (always-feasible) resulting calibra-
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tion problem is solved. The GO method can provide asymptotically design-
consistent and realistic solutions, avoiding non-convergence problems and
thus overcoming the typical need for user-defined heuristics. Moreover, by
keeping close to initial weights, GO is approximately unbiased when design
weights are available, otherwise benefiting from the a priori information pro-
vided by initial weights.

In Section 2, we provide the problem formulation and a technical review
of the related methods. In Section 3, it is shown that the feasibility of a
range-restricted calibration problem can be checked in advance by solving
a (generally sparse) linear program. Moreover, using the `1-norm as an er-
ror measure, it is shown that feasibility can be achieved if allowing for a
minimum (TAE) error in BC and/or a minimum change in RR. In both
cases, the formulations are sparse linear programming problems, which have
the advantage of being efficiently solvable for many variables; `1-norm pe-
nalization for errors in addition allows modification of only a small number
of benchmark totals or range restrictions. Alternative error functions and
modelling options are also discussed.

In Section 4 the generic GO algorithm for an always-convergent globally
optimal survey calibration is presented. The Chi-square distance as in GREG
is used for demonstration, its minimisation being globally optimal, leading to
approximately unbiased estimators. In fact, GREG-based methods allowing
for RR on weights are a particular case of GO, provided that the earlier are
convergent (to a global optimum).

In Section 5 the performance of the GO method is exemplified with real
data by calibrating the weights of the 2012 Health Survey for England to pop-
ulation totals from the 2011 Census in England andWales. Broad age/gender
(20 groups) and region (9 groups) total counts are imposed as exact BC,
while optimally controlled errors are allowed to calibrate HSE weights to a
fine age/gender/region cross-tabulation (378 counts). The resulting calibra-
tion weights are further used to estimate the total counts for a broad age by
economic activity cross-tabulation, which is used for validation purposes.

Note. This paper assumes that calibration is performed using within-
domain samples. Besides, the approach described herein can be applied also
in other fields to perform indirect survey calibration, like microsimulation,
which may combine surveys and benchmarks corresponding to different pe-
riods of time or to non-exactly matching domains or areas (Ballas and Clarke,
2009; Tanton, 2014) or which may calibrate survey-based but otherwise sim-
ulated data (Pudney and Sutherland, 1994; Wittenberg et al., 2011).

2 Background

Assume as given survey data corresponding to a sample S of size n, drawn
from a population U , together with a n-dimensional vector d of survey
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weights (by default, but not limited to, the sample design weights). For
x, a p-dimensional vector of variables, assume as known the n × p survey
matrix X, which contains the values of x for all sample units. For simplicity,
the totals for variables are considered as the measure of interest; the formu-
lation is similar when using proportions or averages. The variables can be
either continuous or categorical, the latter possibly expressed using indica-
tor binary variables (1-0 valued) for each category group in order to exploit
known total unit counts for that group. The Horvitz-Thompson direct survey
estimate of the population totals for the values of x is tHTx = X′d (Horvitz
and Thompson, 1952). Also assume as given a more precise estimate tx of
the totals of x for the population, this estimate provided for example by
administrative census sources.

2.1 Survey calibration

Survey calibration aims at determining new survey weights w that make
the survey compatible with the known auxiliary totals, i.e. satisfying the
benchmark constraints 1:

X′w − tx = 0 . (BC)

The weights should realistically represent units: for example, counts of
households or persons have to be positive (in general, `1 ≤ w ≤ u1, for
two constants `1, u1). Moreover, a drastic change in any particular weight
from its initial value should be avoided (in general, `2d ≤ w ≤ u2d, for
two constants `2, u2). Accordingly, the weights can be subject to range
restrictions in the form

l ≤ w ≤ u , (RR)

being l and u known vectors 2. Finally, in order to lead to unbiased estimates,
the weights should ideally respect as much as possible the set of initial weights
d, which is achieved by minimising a distance Gd(w) between w and d.

Therefore, the mathematical problem associated to range-restricted sur-
vey calibration reads:

argminw Gd(w)
s.t. X′w − tx = 0 (BC)

l ≤ w ≤ u (RR)
(1)

being w the calibration weights searched for 3. The resulting weights are used
to make the survey compatible with known auxiliary totals, and in particular
can be used to adjust to non-response or coverage errors.

1The case of a known group total tG is a particular case of BC in the form 1′Gw−tG = 0.
2The case with no RR is a particular case in which l = −∞, u = ∞ .
3Alternatively used formulations of the calibration problem computing the relative

change in weights g = w/d are equivalent to (1).
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Following (Deville and Särndal, 1992), the function Gd(w) is assumed
to be, for every fixed d > 0: non-negative, differentiable, strictly convex,
defined on an interval containing d, such that Gd(d) = 0, and having a
differential continuous and locally invertible at d. A typical function Gd for
the distance to initial weights is the modified Chi-square or generalised least
squares distance (Singh and Mohl, 1996)4

GGREGd (w) = (w − d)′D−1 (w − d) , (2)

where D = diag(d) is a diagonal matrix with the elements of d in the
diagonal. In that case, the resolution of the survey calibration problem (1) if
ignoring any range restrictions (RR) gives the generalised regression weights
(Deville and Särndal, 1992; Merkouris, 2010):

wGREG = d + DX
(
X′DX

)−1 (
tx −X′d

)
, (3)

the ratio estimator weights being a particular case for p = 1 if replacing D
with diag(X)−1D (Deville and Särndal, 1992).

Another commonly used distance function is the modified discrimination
information associated with the raking estimator (Singh and Mohl, 1996):

GMDI
d (w) =

n∑
i=1

(
wi log

(
wi
di

)
− wi + di

)
. (4)

There is no explicit formula to obtain the raking weights, which, when ignor-
ing (RR), have the form wMDI = D exp(Xλ), for λ a p-dimensional vector
(Lagrange multiplier) solution of tx = X′D exp (Xλ) (Deville and Särndal,
1992). The raking ratio algorithm in (Deming and Stephan, 1940) pro-
vided a solution for the particular case of contingency tables (poststratifica-
tion), which translates into the benchmark variables being categorical group-
membership indicators, some linear combination/s of which is/are unity (i.e.
the groups need not to be mutually exclusive) (Deville and Särndal, 1992;
Kott, 2009).

It should be understood that formula (3) makes sense only when the ma-
trix (X′DX) has full rank. In fact, all the broadly used calibration methods
that were proposed in (Singh and Mohl, 1996) involved a term of the form
(X′DX)−1. A well-known source for non-convergence of calibration methods
is the lack of representativeness in the survey, which translates into at least
one "survey total" being practically zero. In such case, at least one column
in X is close to or equal to zero, and the matrix (X′DX) has a row and a col-
umn close to or equal zero, meaning that the inverse of that matrix is either
not defined or unreliable (in the latter case, the GREG formula has poor
performance); this also happens if multiple variables (and so X columns)

4In the case of known totals and initial weights consistent with those totals (1′w = 1′d
constant), the minimisation of the Chi-square distance simplifies to minimising w′D−1w.
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are collinear. Numerical methods based on robust matrix decompositions
exist to deal with the resolution of weights without computing the inverse of
any matrix, which therefore can address collinearity issues. However, if one
column in X is equal to zero, the equation (BC) can not be satisfied given
that the associated benchmark total in tx is different from zero. Therefore,
in the first case non-convergence is not amendable by any method without
changing the original formulation.

2.2 Calibration estimators, small domains and variance

Assume additionally as given a n× r survey matrix Y containing the values
of y, a r-dimensional variable of interest, for all n sample units in S. The
population totals ty for the variable y can be estimated using the direct
Horwitz-Thompson estimator Y′d, however the variance of this estimator is
high. The calibration estimators make use of calibration weights wCal, which
account for available auxiliary information, to produce the new estimate

tCaly = Y′wCal . (5)

In particular, calibration estimators are design-based, not making use of any
regression model linking the target variable y with the auxiliary variables x.
Given that the considered calibration distances Gd(w) satisfy the properties
assumed in Section 2.1, calibration estimators are both asymptotically design
unbiased and design-consistent, all of them being asymptotically equivalent
(Deville and Särndal, 1992). Moreover, if the auxiliary information is suf-
ficiently related to the variable y, calibration estimators are more efficient
than the Horvitz-Thompson estimator (Fuller, 2002).

When wanting to produce estimators for a small domain D of the pop-
ulation U , it is no longer efficient to use the calibration weights (that were
computed using X for the whole survey S and auxiliary totals tx for the
whole population). Survey calibration at the domain level and/or knowledge
on the domain size, or combining information from multiple surveys at the
domain level, provides approximately unbiased design-consistent estimators
with substantial variance reduction with respect to other estimators (Merk-
ouris, 2010). An intermediate option is adopted in small area estimation (by,
for example, but not limited to, spatial microsimulation) when (sufficient)
survey data are not available for a small area, consisting in using out-of-area
survey data in combination with known area totals (Tanton, 2014). Although
not further developed here, the approach to calibration outlined in this paper
applies to both of these types of small domain estimation.

The variance of calibration estimators can be approximated asymptoti-
cally using the fact that all estimators are asymptotically equivalent to the
generalised regression estimator Y ′wGREG (Deville and Särndal, 1992). A
compact form for the asymptotic variance of the generalised regression es-
timator can be found e.g. in (Merkouris, 2010). Alternative jackknife esti-
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mates of variance can be used in a more general context and were shown to
outperform Taylor-based techniques for estimating the variance of calibra-
tion estimators in (Stukel et al., 1996). This paper will accordingly adopt
a non-asymptotic jackknife approach to estimate the variance of calibration
estimators, at the expense of a higher computational burden.

2.3 Range-restricted and penalized calibration

Several iterative methods have been used to solve the survey calibration
problem (1), when including (RR), for various distance functions (Singh and
Mohl, 1996). As explained in the Introduction, there can be many sources
for non-convergence, not limited to a lack of representativeness in the survey,
which was further discussed in Section 2.1, specially when considering RR
in addition to BC. This is usually addressed by using heuristics that either
modify the BC and/or RR or allow some error in (BC), but however do not
perform any optimal control of that error.

Penalized calibration instead searches for weights satisfying (RR) while
having a parametric control on the error in (BC). This is done via the min-
imisation of

GGREGd (w) +
(
X′w − tx

)′
Λ−1

(
X′w − tx

)
, (6)

where Λ = diag(λ) is a diagonal matrix depending on parameters λ = (λj).
The smallest possible values for these parameters are iteratively searched for
in (Rao and Singh, 1997), where in fact these are obtained as a function
of user-specified tolerances on the errors in (BC). Although this approach
is shown to reduce the discrepancy in respecting (BC) for given (RR), its
dependence on parameters used to control for errors in (BC) is critical for
convergence. See e.g. Théberge (2000) for a closed-form solution to the
problem, and (Beaumont and Bocci, 2008) and Section 9 in (Fuller, 2002)
for closely related model-based ”ridge regression” approaches.

Similarly, in (Wagner, 2013) a vector of unknowns εB was used to model
the multiplicative error in part of the benchmark totals so that the corre-
sponding subset B of BC are satisfied: X′Bw = diag(tx,B)εB. The gener-
alised regression distance GGREGd was minimised in combination with the
squared discrepancy between εB and 1, a vector of 1s, weighted by user-
defined parameters δ. Interestingly, a constant named Gelman bound (κGB)
was introduced to control for the ratio of the largest to the smallest calibrated
weight. Finally, RR on the weights w and errors εB were allowed:

argminw,εB,α,β GGREGd (w) + (εB − 1)′ diag(δ) (εB − 1)
s.t. X′Aw − tx,A = 0 , X′Bw − diag(tx,B)εB = 0 ,

α ≤ w ≤ β , −κGBα+ β ≤ 0 ,
l ≤ w ≤ u , lB ≤ εB ≤ uB .

(7)
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In a simulation with κGB = 35, δ ≡ 1000, convergence problems arose even if
allowing any value for the errors εB in some BC, and increased significantly
(14% to 23% failure) when imposing actual bounds on those errors.

3 Optimal control for RR and BC to allow success-
ful range-restricted calibration

All existing methods addressing the range-restricted survey calibration prob-
lem (1) run into non-convergence issues or lack of control of the errors in BC,
even if using penalization formulations like (6) that theoretically allow for
the minimum error in BC. The usual approach consists in running a cali-
bration method and at the end (after a long running time), if encountering
non-convergence, require an user to adjust the RR and/or BC. We propose
instead to assess if the given values for RR and BC allow the existence for a
solution (feasibility), and allows the computation of optimal alternative val-
ues that guarantee the feasibility in case of foreseen non-convergence, given
user-specified tolerances on changes in RR and/or errors in BC.

The natural questions that we will address in this section are 5, given RR
vectors l,u: is problem (1) feasible? is it feasible if allowing a certain error
ε in BC? in fact, what is the minimum error that needs to be allowed in BC
to achieve feasibility? alternatively, what is the smallest change in RR that
we need to perform to obtain feasibility (even if possibly allowing for some
error ε in BC)?

3.1 An introductory example

Before entering into details, let us inspect the previous questions in a very
simple scenario with n = 100 individuals in a sample with initial weights
d ≡ 20 to be calibrated using one known benchmark constraint BC:

w1 + · · ·+ w100 = 2016 (8)

If we impose as RR the positivity of weights 0 ≤ w, the BC and RR can be
satisfied simultaneously, e.g. by setting all weights equal to 20.16, or by set-
ting 99 weights to 20 and just one weight to 36 (the calibration solution will
depend on the distance function used to measure changes in initial weights).
However, if we impose that 0 ≤ w ≤ 20 as RR on weights in order to avoid
any survey unit to represent more than 20 total units, the BC (8) cannot
be satisfied thus the combination of BC and RR are incompatible. In that
case, if we allow a small arbitrary error of 100 in (8), the problem becomes
feasible by taking all weights equal to 20. In doing so, we obtain an error in
BC equal to 16, which is in fact the minimum needed for compatibility with

5If setting to ±∞ either of the RR vectors, we obtain the same questions for the other
RR vector.
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the given RR. Alternatively, the upper bound on weights can be set to 20.16
(or any higher value) in order to have feasibility given the original BC.

3.2 Can the problem be solved?

The existence of a solution (feasibility) for the range-restricted calibration
problem (1) is equivalent to the existence of solutions for the set of con-
straints: {

X′w − tx = 0 ,
l ≤ w ≤ u .

(9)

If this set is non void, then it will be possible to find in it the vector of
weights w at minimum distance Gd(w) to the set of initial weights d. By
expressing the equality as two inequalities, the system (9) can be seen as
a set of affine inequalities in the unknown w, and therefore its feasibility
could be checked using direct methods like system reduction by repeatedly
using Fourier-Motzkin elimination (Dantzig and Eaves, 1973). An alterna-
tive algorithm for assessing the existence of a solution to the range-restricted
calibration problem was developed in Théberge (2000). However, the exis-
tence of a solution can also be addressed by computing the minimum change
needed in BC or RR for feasibility (following sections): if no change is needed,
then the original problem is feasible; otherwise, the minimum needed change
has already been computed.

3.3 Feasibility guarantee allowing minimum error in BC

The minimum total absolute error (TAE) in BC needed for their compatibil-
ity with the given RR is

TAE∗ = minw ‖X′w − tx‖1
s.t. l ≤ w ≤ u ,

(10)

being ‖v‖1 the `1-norm of a p-dimensional vector v, defined by ‖v‖1 =∑p
i=1 |vi|. The total absolute error has a very easy physical interpretation

given that its units are the same as those of the population totals tx. The
minimisation of the TAE error can be written as the minimisation of ‖ε̃‖1 =
1′ ε̃ = ε̃1 + · · · + ε̃p, for a non-negative vector ε̃ such that |X′w − tx| ≤ ε̃
(component-wise). By decomposing the absolute value we obtain two vector
inequalities6, and therefore:

TAE∗ = minw, ε̃ 1′ ε̃
s.t. X′w − ε̃ ≤ tx , −X′w − ε̃ ≤ −tx ,

l ≤ w ≤ u , ε̃ ≥ 0 .
(11)

Given that both the objective and all constraint functions are affine in the
unknowns (w, ε̃), we have shown that finding the optimal TAE is a linear

6For any x, y real numbers, |x| ≤ y is equivalent to x ≤ y and −x ≤ y
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programming problem (Boyd and Vandenberghe, 2004). This class of con-
vex optimization problems may be solved quickly and with global optimality
convergence guaranteed by exploiting duality relations and optimality theo-
rems (Boyd and Vandenberghe, 2004). If the solution is TAE∗ = 0 it means
that the calibration problem (1) is feasible; non-zero minimum TAE values
require the modification of the original problem as proposed in Section 4.

3.4 Feasibility search by allowing minimum change in RR
and user-specified error in BC

Assume now that we do not want to have a TAE error in BC greater than a
scalar value ε (ideally equal to 0), but that we allow a small change in RR
provided by two non-negative vectors λ,µ, while keeping the weights inside
a limiting range: L ≤ w ≤ U. The smallest possible total absolute change
(TAC) in RR that guarantees feasibility with TAE error below ε and final
weights inside the maximum limiting range, if it exists, can be computed as

TAC∗ = minλ,µ,w ‖λ‖1 + ‖µ‖1
s.t. ‖X′w − tx‖1 ≤ ε ,

L ≤ l− λ ≤ w ≤ u + µ ≤ U , λ ≥ 0 , µ ≥ 0 .
(12)

The associated linear programming problem reads:

TAC∗ = minλ,µ,w, ε̃ 1′ λ+ 1′ µ
s.t. X′w − ε̃ ≤ tx , −X′w − ε̃ ≤ −tx , 1′ ε̃ ≤ ε ,

−w − λ ≤ −l , w − µ ≤ u ,
0 ≤ λ ≤ l− L , 0 ≤ µ ≤ U− u , ε̃ ≥ 0 .

(13)
This problem has the trivial solution TAC∗ = 0 for values ε above or equal
to TAE∗, given that TAE* is the minimum error needed without modifying
the RR. It may happen that the problem has no solution for a given ε smaller
than TAE∗, for instance for ε = 0 with non-consistent BC, in which case
intermediate values between ε and TAE∗ could be explored for the allowed
error in BC, given that the RR were non-trivial. If TAC∗ > 0, then a
modification of the original calibration problem (1) is required, as proposed
in Section 4.

3.5 Alternative possibilities to model feasibility

The global optimality and simplicity of the previous approach are not af-
fected if constant factors are introduced. For example, different relative
weights r may be assigned to different BC, by just replacing in (11) and (13)
the expression 1′ε̃ with r′ε̃. In particular, in the case that the benchmark
values are provided from administrative totals of cross-tabulated variables,
it is possible to normalize the TAE by dividing each benchmark constraint
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by the relevant total of the corresponding administrative table, so that the
global measure of error is a sum of comparable errors. Similarly, it is possible
to divide the benchmark totals tx by the relevant benchmark table totals v
so that the calibration weights represent proportions, by just replacing tx
with diag(v)−1tx.

Different precision levels on BC can be also achieved, e.g. having some
“exact” BC as in (Wagner, 2013) or some BC with a smaller penalization
to errors as in (Rao and Singh, 1997), by setting in (11) and (13) the cor-
responding components of ε̃ to the desired precision values. This option
will be used in the experimental validation of the paper, where the exact
BC will correspond to a broad cross-tabulation and a finer cross-tabulation
will be used as inexact BC. If wanting to add a ”Gelman” bound con-
trol to RR as in (Wagner, 2013), two scalar variables α, β and the same
affine constraints as in (7) need to be added to the optimization programs:
The modified problems remain linear given that these constraints are linear:
α ≤ w ≤ β , −κGBα+β ≤ 0 , α ≥ 0 , β ≥ 0. The problem in Section 3.4 can
usually be simplified: if the lower bound l has to be 0 (positivity of weights)
then only the upper bound can be varied, which can be done by only es-
timating µ while setting λ to zero; or if the changes can be the same for
all RR, then only one parameter needs to be used for each of the increment
vectors λ and µ.

The ideal choice of a penalization function should be based on distribu-
tional assumptions for errors in BC and desired changes in RR7, depending
on the problem and available computational power. The proposed `1-norm
allows a linear programming implementation and is a robust penalization
that in practice produces many very small residuals, allowing to identify
many BC that can be satisfied exactly e.g. by looking at the components of
ε̃ in (11). A simpler approach can use the `∞-norm to penalize errors (the
maximum component in a vector being penalized), which is equivalent to
considering as single-valued the unknown vectors ε̃ in (11) and λ,µ in (13).

Using a `2-norm or a weighted least squares penalization converts the
feasibility programs into quadratic and quadratically constrained quadratic,
which are solvable for less variables and are more time-consuming than linear
programs (Boyd and Vandenberghe, 2004). In fact, Théberge proposed using
a quadratic norm to allow minimum errors in BC for GREG without RR
in (Théberge, 1999) (a closed-form solution exists). In (Théberge, 2000)
he further formulated the problem with RR (Section 2) but adopted a not
always convergent penalization-like formulation for its resolution (Section 4).

7Assuming independent identically distributed random errors in a linear system, the
`1-norm penalization gives the MLE for a Laplacian distribution of errors, whereas the `2-
and `∞-norm penalizations give the MLE for Gaussian and uniform error distributions,
respectively (Boyd and Vandenberghe, 2004).
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4 Optimally modelling and solving range-restricted
survey calibration

We have seen in Section 3 that the feasibility of the range-restricted calibra-
tion problem (1) has linear complexity, independently of the chosen distance
function Gd(w), and it can be achieved with equal complexity level by allow-
ing optimally controlled errors in BC and/or changes in RR. In this section
we propose Algorithm 1 to solve the range-restricted survey calibration prob-
lem (1), allowing for optimal modification(s) of the BC tolerance and/or RR
bounds, only if needed and controlled by user-defined parameters, ε and δ
respectively. We also discuss the choice of a distance function Gd(w) in Algo-
rithm 1, and focus on the particular Chi-square distance for demonstration.

For sufficiently high values of ε tolerance to error in BC (infinity in the
extreme case), the calibration is performed in two steps: first, the TAE∗

minimum value is computed; then, the calibration problem allowing TAE
error in BC equal to TAE∗ is solved optimally. The convergence of this two-
step approach is guaranteed by construction while respecting the asymptotic
design consistency. For values of ε smaller than TAE∗, a further step is
performed trying to achieve error in BC below ε by modifying the RR with
a minimum total absolute change TAC∗, given that this value is below the
user-specified tolerance δ. In case the modification of RR cannot lead to a
feasible problem, Algorithm 1 proposes to use ε = TAE∗, but an exploration
for smaller values could be performed as explained before.

In Algorithm 1, the range-restricted calibration problem (1) is solved if
it is feasible (line 3), and otherwise it is replaced by a problem of the form

argminw,y Gd(w)
s.t. A (wy ) ≤ a ,

b ≤ w ≤ c ,
(14)

for a matrix A, vectors a, b, c, and auxiliary variables y defined by the
algorithm. More specifically, the optimisation domain from (1) is modified
in line 6 by replacing the BC with ‖X′w − tx‖1 ≤ TAE*, and in line 10
additional constraints of similar nature are added. The resulting domains
can be expressed using affine inequalities in the form (14) with the help of
auxiliary variables, as done in Section 3. Therefore, the complexity of the
resulting problems will be mainly associated to that of the distance function
Gd(w).

Under the assumptions of Section 2.1 for the distance function Gd(w),
the problems (14) are convex with smooth objective and therefore can be
solved with global optimality convergence guarantees by exploiting dual-
ity relations and optimality theorems like the necessity and sufficiency of
Karush–Kuhn–Tucker conditions (Boyd and Vandenberghe, 2004). The res-
olution can be done with fast convergence in particular cases; a closely related
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Algorithm 1 Optimal calibration via optimal control for errors in BC and
changes in RR
Require: {X, tx,d} data, {l,u,L,U} RR and bounds, Gd(w) distance

function, ε max allowed error in BC, δ max allowed change in RR
1: Compute TAE* min total absolute error achievable in BC, using (11)
2: if TAE* is 0 (Original problem feasible) then
3: return w = solution of (1), i.e.

w = argminw Gd(w)
s.t. X′w − tx = 0 (BC)

l ≤ w ≤ u (RR)
4: else
5: if TAE* ≤ ε then
6: return w = sol. of (1) replacing BC with ‖X′w−tx‖1 ≤TAE*
7: else
8: Search TAC* min total absolute change needed in RR to have

a TAE error in BC below ε, using (13)
9: if TAC* exists and TAC* ≤ δ then

10: return w = sol. of (1) replacing BC with ‖X′w −
tx‖1 ≤ ε and replacing RR with ‖λ‖1 + ‖µ‖1 ≤ TAC* ,
L ≤ l− λ ≤ w ≤ u + µ ≤ U , λ ≥ 0 , µ ≥ 0

11: else
12: error the problem cannot be solved for the given data and

parameters; go to line 6
13: end if
14: end if
15: end if

example is the semismooth Newton method proposed in (Wagner, 2013) for
the Chi-square distance (2) and the raking distance (4). Note that despite its
possible efficient minimisation, a `1 distance function is not suitable since it
would allow a few weights being very distant from initial ones, which could
undesirably cause a high bias in calibration estimators. Rather than de-
veloping resolution methods for different distances, this paper has focussed
on developing a flexible always-convergent optimal calibration framework,
which is exemplified by adapting the range-restricted generalised regression
(GREG) estimator.

The range-restricted calibration problem (1) for the Chi-square distance
(2) was identified as a quadratic programming problem in (Isaki et al., 2000)
and its fast optimal resolution exploiting duality principles was addressed
recently (Wagner, 2013), however its feasibility has not yet been guaranteed
by any method. If using Algorithm 1 for this purpose, the resulting modified
problems (14) are inequality-constrained quadratic convex optimization pro-
gramming problems. These can be solved in polynomial time, and in practice
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relatively quickly, while assessing the global optimality of the solution (Boyd
and Vandenberghe, 2004).

5 Evaluation

The proposed methods are demonstrated and validated using real datasets:
the Health Survey for England 2012 (HSE) and the 2011 Census in Eng-
land and Wales (CEW). The HSE is representative of the English popula-
tion living in private households (Craig and Mindell, 2012), and it is drawn
in 2011 using a multi-stage stratified sampling approach. Available sur-
vey weights adjust for selection, non-response, and population age/gender
and strategic health authority region profiles. CEW tables DC1104EW and
DC1602EWLA provide population total counts for non-institutional resi-
dents in England.

The initial survey sample for the experiments consisted of 10,308 indi-
viduals from HSE 2012 8. In all experiments, census-based population totals
for ten age groups9 cross-tabulated with gender and population totals for the
nine regions in England (20+9 counts for a population of size 52,059,931)
were imposed as exact constraints, and the positivity of calibration weights
was imposed as part of range restrictions (RR) on weights. An additional BC
was imposed with 378 population totals for 21 age groups10 cross-tabulated
with gender and region. This fine cross-tabulation was not available at the
time of release of the HSE data. Population totals for five age groups11 by
four economic activity groups (in-employment, ILO unemployed, retired, and
other inactive) were used for validation purposes. The experiments did not
use any continuous benchmarks for the sake of simplicity, but benchmarks
on continuous data, e.g. average age per region, could be incorporated.

Independently of any RR choice (or the initial sample weights), the fine
age/gender/region cross-tabulation with 378 group totals cannot be satisfied
exactly by calibration weights, given that the sample has a zero count for
one group12. Further motivated by the presence of some small counts, tradi-
tional calibration would only impose a broad cross-tabulation on the survey
weights like the 29 age/gender and region counts that we will impose exactly
in all experiments. However, the fine age/gender/region counts provide a
much richer picture of the joint distribution of those variables, and the orig-
inal weights are distant from correctly representing that picture: the total
absolute error (TAE) of the HSE 2012 weights for that BC is of 7,858,083
units (a 15.14% of the total population size). Given that the cross-tabulation

825 adults not having a valid economic activity were discarded.
9Ages 0-4, 5-9, 10-15, 16-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75+.

10Ages 0-4, 5-7, 8-9, 10-14, 15, 16-17, 18-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49,
50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85+.

11Ages 16-24,25-34,35-49,50-64,65+
12The HSE 2012 sample does not contain females in the North East aged 15.
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is categorical, the total absolute error is counting the number of individu-
als wrongly assigned to each cross-tabulation group. Since we are imposing
exact broad age/gender population counts, the estimated population total
remains fixed. Thus half of the TAE is the number of individuals being
misclassified, which for the HSE estimate is 7.5% of the English population.

Instead of ignoring the fine age/gender/region cross-tabulation, it can be
used to calibrate the sample weights if we allow some error in BC (which
arises as a natural need for the given data), consequently resulting in better
estimates on age/gender/region related variables. In order to allow a direct
comparison of the gain in adding this strategy to the traditional approach, we
imposed as exact the already described broad age/gender and region cross-
tabulations. We performed three validation experiments returning positive
weights w at minimum Chi-square distance (2) to the initial sample weights:

Ex1. Minimum TAE error in BC;

Ex2. Minimum TAE error in BC and 0.5 ≤ w ≤ 3.5 as RR on weights;

Ex3. Minimum TAC change in the previous RR so that TAE ≤ 0.1%.

The corresponding optimisation programs are summarised in Algorithm 1.
For all experiments and for the original HSE data we show in Table 1 the

modified Chi-squared distance (2) between the HSE and each considered set
of weights and provide descriptive statistics of the latter. Jackknife standard
deviation (SD) estimates for the BC and validation count estimates were
obtained using 94 groups of primary sampling units (PSUs), built-up by
deleting six PSUs at each time as described in (Kott, 1998). The error
measures used for estimated counts were: TAE the total absolute error, the
TAE as a percentage of the cross-tabulation, TRE the total relative error
(sum of relative errors over all group counts, as a %), and RMSE the root
mean square error. Table 2 contains the average SD and fitting errors for
the fine age/gender/region BC cross-tabulation estimates, and Table 3 the
average SD and errors for the age by economic activity validation count
estimates.

The original HSE weights (HSE, first row in all tables) do not present
very extreme values, the highest ratio between weights being 18.32 (Ta-
ble 1). As already explained, the HSE weights perform badly in estimating
the fine age/gender/region distribution in England: 15% of total absolute
error, and 6,829.8% of total relative error, with an average SD equal to
0.95% of the total population (Table 2). The broad age by economic activity
cross-tabulation is quite well estimated by HSE with TAE error below 5%
(Table 3). This is possibly in part because the broad categorisation of age is
similar to the age categorisation which the HSE weights adjust for.

The Ex1 calibration weights (Ex1, second row in all tables) are at aver-
age Chi-square distance of 0.5 to the HSE weights, and have slightly more
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extreme values, the highest ratio between weights being 23.31 (Table 1). The
resulting Ex1 age/gender/region BC count estimates have much smaller SD
than the HSE estimates, the proposed method being therefore more efficient,
and have by construction a very small bias: the minimum possible TAE error
in BC (Table 2). All considered SD and error indicators indicate consistently
an improvement in performance when applying the Ex1 calibration weights
to estimate the non-fitted validation totals (Table 3).

Experiment Ex2 (third row in all tables) provides an example of a prac-
tice commonly followed by practitioners and found in the literature, see e.g.
(Singh and Mohl, 1996; Stukel et al., 1996), consisting in the arbitrary selec-
tion of range restriction values for the calibration weights and a posteriori
observation of errors (in case of convergence). The Ex2 selected RR values
result in a (user-defined) low dispersion in Ex2 weights (highest ratio be-
tween weights being 7), which computation required a minimum TAE error
in BC of 0.65% for convergence. As a result the average deviances and all
the fitting errors and validation errors are higher for Ex2 than those for the
Ex1 weights (Tables 2 and 3). So far we have seen that Ex1 provided an
optimal fit of the BC but at the expense of slightly more extreme weights,
and also that an arbitrary choice of RR on weights in Ex2 achieved more
centred weights at expense of increasing the SD and the (minimum) errors
in both the BC and validation estimates.

It would certainly be time consuming to perform an exploration of pos-
sible values for RR in order to obtain satisfactory weights with non-extreme
values and low SD and low (minimum) fitting errors for the BC. Instead,
Ex3 (fourth row in all tables) searches for the minimum change in provided
initial values for RR at expense of allowing a (user-specified) 0.1% TAE er-
ror in fitting the fine age/gender/region BC counts. Compared with Ex2,
both fitting and validation errors were smaller for Ex3. Compared with Ex1,
Ex3 resulted in a set of weights with less extreme values, the highest ratio
between weights being 14.00, and an small increase in (controlled) bias and
SD in fitting the BC. Nonetheless, Ex3 provided (slightly) better estimates
of the validation counts, pointing at a possible dangerous over-fitting effect
if using the Ex1 approach: fitting too-closely a fine cross-tabulation (having
small counts) may well increase the bias and variance in estimation for non-
fitted variables. However, in the case considered here, this effect was tiny
compared to the efficiency gain and bias reduction with respect to estimates
obtained using the initial HSE weights.

Overall, the three experiments Ex1-Ex3 used Algorithm 1 to minimally
modify the HSE weights to adjust them to the fine age/gender/region BC
cross-tabulation totals, overcoming the fact that the survey sample had small
and even zero counts for that cross-tabulation. This was done by allowing for
a minimum error in BC, which can be seen as equivalent to clustering some
benchmark groups. Thus the experiments optimally improved a practice of-
ten followed arbitrarily to avoid non-convergence. In all experiments, not
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Chi-sq Min Q1 Median Q3 Max Max/Min
HSE 0 0.36 0.77 0.91 1.14 6.67 18.32
Ex1 570.3 0.31 0.73 0.90 1.14 7.26 23.31
Ex2 524.6 0.50 0.73 0.90 1.14 3.50 7.00
Ex3 549.1 0.36 0.73 0.90 1.14 5.04 14.00

Table 1: Chi-square distance and distribution statistics for the HSE and
obtained calibration weights.

SD TAE TAE (%) TRE (%) RMSE
HSE 205,835.4 7,858,083.0 15.09 6,829.8 27,415.5
Ex1 3,091.3 29,678.0 0.06 121.0 1,079.4
Ex2 11,298.3 339,509.2 0.65 604.1 3,227.8
Ex3 3,525.2 52,059.9 0.10 192.3 1,177.1

Table 2: Age by gender by region cross-tabulation estimates (378 counts):
average standard deviation (SD) over all estimates, and fitting errors.

only was the fitted BC age/gender/region distribution much better approx-
imated than with the original HSE weights, but also efficiency and perfor-
mance improved when estimating age by economic activity validation total
counts.

6 Summary and conclusion

This paper has presented a two-step global optimisation (GO) approach to
design-based survey calibration with guaranteed convergence, allowing for
range-restrictions on weights while controlling for those range-restrictions
and the (minimum) error in benchmark constraints.

First, GO assesses the feasibility of the range-restricted calibration prob-
lem,with infeasible problems being transformed into feasible ones by allowing
minimal errors in the benchmark constraints (BC) and/or minimal changes
in the weights’ range restrictions (RR). For this purpose, GO identifies the
minimum achievable difference between the calibrated (reweighted) survey
and the benchmark totals, taking into account any RR specified for the so-
lution weights. It also identifies the minimum needed change in those RR,
allowing exploration of an alternative solution, more respectful of the original
problem, having zero or below-minimum error in BC (in general, the exis-
tence of solution is only guaranteed if allowing the minimum error in BC). All
the problems involved in this first step assessing/guaranteeing feasibility are
modelled using the robust `1-norm penalization (`∞- and `2-norm alterna-
tives, as well as weighted versions, were discussed in the text) and as a result
can be solved efficiently using sparse linear programming. Second, the GO
approach applies global optimisation techniques for minimising the change
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SD TAE TAE (%) TRE (%) RMSE
HSE 1,027,677.0 2,059,120.9 4.89 633.1 165,721.7
Ex1 861,528.8 1,763,839.5 4.19 494.1 130,193.5
Ex2 869,717.6 1,786,060.9 4.24 497.3 130,407.6
Ex3 856,300.1 1,749,775.5 4.16 492.8 129,310.1

Table 3: Age by economic activity estimates (20 counts): average standard
deviation (SD) over all estimates, and validation errors.

in weights subject to allowing only the minimum error in BC or change in
RR required for feasibility (already computed in the previous step). The
approach has been theoretically exemplified with the Chi-square distance
being used to measure the change in weights with respect to initial (design)
ones. Other distances have been considered, for which modern optimisation
techniques will be useful to solve the resulting calibration problems.

The first step to assess/achieve feasibility represents an efficient mod-
elling alternative to the current approaches in which convergence is known
only after running a calibration method (time costly) and the reasons for
non-convergence are not always clear. Moreover, existing approaches either
make use of heuristics after encountering non-convergence, which do not offer
enough control on the solution, or require user-defined parameters to model
infeasibility, which in practice may not avoid non-convergence.

For survey calibration problems where the BC can be met, GO will pro-
vide a solution equivalent to that produced by calibration methods that
allow RR on weights (assuming the chosen number of iterations in itera-
tive methods poses no limit to convergence). GO-based estimators preserve
the good properties of survey calibration estimators, design consistency and
asymptotic design-unbiasedness, while adding guaranteed convergence and
global optimality. In a real-data experiment we showed a double-win situa-
tion (gain in both bias and variance), achieved through two-level calibration:
broad group cross-tabulations were imposed exactly, whereas a small group
cross-tabulation (leading to zero counts in the survey) was managed opti-
mally using the proposed approach.
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