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Abstract 

Over several decades, germplasm collections have been developed across the world to capture the 

genetic diversity of crop plants vital to food and agriculture. Recently, the genetic characterisation of 

many of these collections has begun, using a variety of genetic marker technologies. Here, we describe 

some first attempts at uncovering the genetic structure of a single collection characterised by high-

throughput marker techniques. This research both hints at the knowledge that may be gained by 

analysing such datasets and identifies areas of research that should be targeted for the future.  

 

Introduction 
The production of crops, a large part of the worldwide food supply, relies on intensive agricultural 

practices that can lead to genetic uniformity. Such uniformity creates risks regarding maintaining 

protection against pests, disease and environmental change. Plant breeders wish to develop new crop 

varieties that can overcome old adversities and deal with new ones as they arise. In order to achieve 

this, the breeder must have access to a wealth of genetic diversity in their crop of interest. The 

development of germplasm collections, which capture this diversity, has been ongoing for decades. 

Collections have been developed though national projects and through international collaborations. 

For example, the work of the Consultative Group on International Agricultural Research (CGIAR; 

http://www.cgiar.org/) has led to the systematic collection of specimens of landraces, old cultivars, 

wild species, advanced cultivars and breeders lines, for cassava and sweet potato to rice and maize. 

The eleven CGIAR international genebanks currently maintain over 600,000 crop, forage and 

agroforestry samples in the public domain, providing massive datasets to be analysed in the coming 

years. 

 

The historical driver for the development of germplasm collections was to preserve and document crop 

genetic diversity, thus ensuring future food security, whilst also evaluating and distributing the 

germplasm. Recent advances in genetic marker technology are leading to the growing genetic 

characterisation of germplasm collections, allowing for informed exploitation of the germplasm in 

future breeding studies. Germplasm collections may hold important alleles (or versions of a gene) for 

agronomic traits such as disease resistance, yield and tolerance to a broad range of environmental 

conditions. With the molecular characterisation of germplasm collections comes the ability to carry 

out detailed analyses on their genetic structure.  For example, we may wish to search for associations 

between traits and alleles or perhaps traits and haplotypes (allelic combinations of adjacent genes). We 

may wish to understand the evolutionary history of the species, in particular the balance between the 

different processes of genetic marker evolution (vertical evolution) and introgression (introduction of a 

gene or haplotype from one variety to another via hybridisation - horizontal evolution).  We may wish 

to know how closely related two members of a collection, or accessions, are to one another.  We may 

wish to examine all relationships within the collection and use this to develop a core collection that 

maximises the diversity for a small, fixed number of accessions.  

 

In this article, we will introduce ongoing research that attempts to answer some of these questions. We 

will begin by describing the molecular characterisation of a germplasm collection for pea by a recently 

developed high-throughput marker technique. Such techniques bring with them new challenges for 

determining marker scores from the resultant raw datasets. We will then discuss how we can use the 



marker scores to assess the genetic difference between accession and estimate the structure of an entire 

germplasm collection. Finally, we will touch upon ongoing research into the estimation of efficient 

core collections.  

 

Marker prediction from high-throughput datasets 
With the desire to analyse the genetic structure of a germplasm collection, there comes an interesting 

debate as to which type of molecular marker is most appropriate for the task.  The last decade has seen 

the rapid development of marker technologies in the plant domain, from RFLPs, SSRs and AFLPs 

through to SNPs (single nucleotide polymorphisms), SSCPs (single stranded conformation 

polymorphisms) and RBIPs (retrotransposon-based insertion polymorphisms), with some marker types 

targeting genic regions of the genome and others deriving from alternative genomic features.  

 

RBIPs [1] are based on a genomic element known as a retrotransposon. Such an element can be 

thought of as a mobile piece of DNA that inserts itself within a genome and subsequently jumps to a 

new genomic location, whilst leaving a copy of itself behind. Thus retrotransposons accumulate within 

the genome, leading to an observed growth in plant genome size. As these elements can only be 

gained, and not lost, through their normal mode of evolution, they can help us to understand the 

direction of evolution by the order of their accumulation. However, introgression can lead to the 

appearance of an element being lost or gained without a deletion or a jump taking place. Each 

retrotransposon type possesses a number of locations within a genome at which it can be inserted. 

Therefore each plant accession can be characterised by a particular pattern of presence and absence of 

the retrotransposon at each of these locations. Formally, for a particular retrotransposon, there is a 

fixed order i (along the genome, if this information is known, otherwise a conceptual order for clarity 

only) and number N (i.e. i = 1,…,N) of locations at which the retrotransposon may be present or 

absent. Thus, for each plant j each value mi,j denotes the presence or absence of a copy of the 

retrotransposon at position i in plant j.  We say that mi,j = 0 when the retrotransposon is absent and mi,j 

= 1 when the retrotransposon is present. 

 

A high-throughput experimental technique for the assaying of a single RBIP marker in a large number 

of plant accessions (e.g. several thousand) has recently been developed [2]. This technique is known as 

the tagged microarray marker (TAM) approach. TAM microarrays have recently been used to 

characterise the John Innes Pisum Collection (http://www.jic.bbsrc.ac.uk/germplas/pisum/) using the 

PDR1 retrotransposon. This characterisation has taken the form of 76 experiments (one for each 

insertion site) over 3,029 Pisum accessions together with 171 positive and negative controls. The 

experiment measures the relative levels of red and green fluorescently labelled probes for each plant. 

The probes are specific to each genomic location such that, at a particular insertion site, the red probe 

is designed to be indicative of the absence of the retrotransposon at that particular location and the 

green probe is designed to be indicative of its presence. Thus for each experiment i, we are given a 

measure of intensities of green and red for each plant j, gi,j and ri,j respectively. The first problem 

presented to us is to use these values of gi,j and ri,j to predict the corresponding values of mi,j.  

 

The recent widespread use of gene expression microarrays in biological research has taught us many 

lessons about analysing such datasets. We know that, prior to comparison of our red and green 

intensities, we need to normalise the raw data. In particular, we have chosen to use the vsn routine [3] 

within the BioConductor suite [4] of the R statistical package (http://www.r-project.org/). This 

algorithm both calibrates the red and green values (i.e. brings them onto a common scale so that the 

intensities can be directly compared) and stabilises their variance (i.e. transforms the values so that 

their variance is no longer a function of intensity but is more or less constant across the intensity 

scale). Figure 1 shows two distributions of the ratios of red and green intensity levels after they have 

been analysed with vsn, one for each of two markers. The left distribution is bimodal, with the left 

peak representing accessions where the retrotransposon is present (i.e. the green intensity level is 

significantly higher than the red intensity level) and the right peak representing accessions where the 

retrotransposon is absent (i.e. the red intensity level is significantly higher than the green intensity 



level). The right distribution is more difficult to analyse, with four significant peaks. In this example, it 

is most likely (comparing the distribution to that of other markers) that the leftmost peak represents 

low intensity values that cannot be analysed with any certainty. The second left peak represents the 

accessions with the retrotransposon present and the rightmost peak accessions with the retrotransposon 

absent. The remaining peak represents “yellow” spots where the red and green intensity levels are 

comparable. At first sight, one would presume that these were plants that were heterozygous for the 

retrotransposon insertion (i.e. on one copy of the relevant chromosome the retrotransposon was 

present and on the other it was absent). However, it is known that the plants within the Pisum 

collection are homozygous for these retrotransposons (i.e. both copies are present or both are absent). 

What appears to be happening is that some insertions reside in repeated sequences, so a plant 

containing an ‘occupied’ signal from a locus might nevertheless produce an ‘unoccupied’ signal from 

another copy of the repeat elsewhere in the genome. In some cases such problems can be solved but 

further research must be done to resolve this issue.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Two distributions of transformed intensity ratios for a single RBIP marker, each 

assayed by a TAM microarray in 3,029 varieties of Pisum 
 

Once we have determined the meaning of these peaks, we can use mathematical techniques to predict 

the status of each marker within each plant accession. We have recently fitted Gaussian (normal) 

mixtures to the distribution of transformed intensity ratios to predict marker presence or absence. 

Furthermore, we are currently automating the analysis of TAM microarrays within our MPP 

(microarray-to-phylogeny pipeline) software (http://cbr.jic.ac.uk/dicks/software), which was originally 

developed for the analysis of Comparative Genomic Hybridisation (CGH) microarrays. By combining 

the results of each array analysis, we produce a table of 76 x 3,029 elements, with each element being 

a 1 or a 0. We can now use this table to find out more about the relatedness of our accessions and the 

overall structure of the germplasm collection. 

 

Measures of distance 

When comparing the marker scores of two or more accessions, we need to have some measure of 

comparison.  Usually, we will use a measure of the distance between two sets of marker scores, where 

we would like this distance to be strongly correlated to the real evolutionary time separating them. 

There are many distance measures in the biological domain that are used to compare sets of binary 

characters, such as our RBIP marker scores. We will now discuss briefly two distance measures: the 

Jaccard distance and the retrotransposon distance. 

 

Jaccard distance 

A distance measure widely used with genetic markers is the Jaccard distance which, for our data, can 

be calculated as follows between two accessions x and y: 



 

d J (x , y) = a / (a + b + c) 

 

where 

a = no. of markers i where mi,x = 1 and mi,y = 1  

b = no. of markers i where mi,x = 0 and mi,y = 1  

c = no. of markers i where mi,x = 1 and mi,y = 0 

 

The Jaccard distance is very easy to calculate, even for large datasets. Furthermore it is widely used 

and understood and may be used flexibly for many types of marker. However, because it is widely 

applicable it may not maximise the information contained within a particular type of dataset. For this 

reason, we are looking to develop a custom distance measure for RBIP datasets. 

 

Retrotransposon distance 

We have recently begun looking at ways of modelling the retrotransposon insertion process. If we 

suppose that retrotransposons arise according to a simple birth process and, furthermore, that a 

proportion of insertion sites ρ are invariant (i.e. always empty) and that rates of insertion per site vary 

across the genome according to a Gamma distribution with shape parameter α then the maximum 

likelihood estimates (Savva, manuscript in preparation) of the retrotransposon distance between an 

accession x and the reference accession 0 (where all sites are empty) and between two accessions x 

and y are as follows: 

 
where N is the number of insertion sites, Nx is the number of empty sites in x, Ny is the number of 

empty sites in y and Nxy is the number of sites empty in both x and y.  

 

At present, this distance is a very simple model of the retrotransposon insertion process and we have 

yet to compare its performance to that of the Jaccard distance. In the future, we intend to validate and 

extend the model. For example, we would like to be able to analyse more than one retrotransposon 

type simultaneously. Furthermore, we need to take into account that most crop plant germplasm 

collections contain strongly conserved, fragmented haplotypes, which have been distributed across the 

species by introgression (i.e. horizontal evolution) Thus, two apparently highly diverged plants might 

be almost identical for a large fraction of a particular chromosome(s). The new model should take into 

account the introgression process such that we will be able to formally estimate the relative 

contributions of insertion and introgression to the evolution of a group of accessions, while analysing 

more than one retrotransposon type simultaneously. 

 

Deducing network-like structures 
Once we have established methods of calculating distances between pairs of accessions, we can use 

these values to analyse the pattern of genetic diversity within the collection as a whole. Traditionally, 

many types of biological dataset have been viewed as tree structures, after the “tree of life” thought to 

connect all living organisms. However, it has become apparent in recent years that trees will not 

always describe adequately a biological dataset and that network-like evolutionary events may play an 



important role in shaping such datasets. Several algorithmic methods have been developed to estimate 

some type of network from a matrix of distances. One such method is the NeighborNet [5], which is 

implemented in the SplitsTree4 software [6]. NeighborNet essentially extends the widely used 

neighbor-joining algorithm [7], one of the most popular methods of tree construction in the biological 

domain, to one capable of deducing a planar phylogenetic network. NeighborNet allows the researcher 

to visualise areas of the graph that are inconsistent with a tree-like structure, via “box-like” features. 

For a germplasm collection, such features may represent introgression events, which do not follow a 

treelike evolutionary mode.  

 
Figure 2: A NeighborNet of 50 Pisum accessions scored over a subset of 7 RBIP markers 

 

Figure 2 above shows a NeighborNet of 50 Pisum accessions, assayed over 7 RBIP markers and with 

evolutionary distances estimated using the Jaccard distance. It will be interesting to see whether or not 

the apparently significant network-like structure seen within this figure remains when all 76 markers 

have been analysed. 

 

Estimating a core collection 
Having calculated both a distance matrix and a neighbor-joining tree or NeighborNet (whichever is 

most appropriate) for a set of accessions within a germplasm collection, we would then like to use this 

information further to find an efficient core collection. A core collection may be thought of as a subset 

of the overall collection that describes most of its diversity (whether genetic, geographical or 

phenotypic) for a fraction of its size. Typically, a core collection comprises 10% of the number of 

accessions seen in the whole collection. Therefore, for a fixed number c, the required size of our core 

collection, we need to find the network that displays the maximum amount of diversity over c 

accessions.   

 



We have recently begun to develop new approaches for the estimation of core collections based on 

genetic diversity. The starting point of this research is the greedy algorithm proposed by Steel [8]. This 

algorithm proceeds as follows, either from a distance matrix or a neighbor-joining tree, where c is the 

number of accessions within the core collection and G is the set of all accessions: 

 

Choose the pair of accessions most diverged from one another within set G 

Add both accessions to the current accession set S 

While (|S| < C) do 

 (Choose the accession from G that is most diverged from S 

  Add this accession to S) 

 

This algorithm is simple to implement and has been shown to give a guaranteed solution to the 

problem of finding an optimal genetically-based core collection from a distance matrix or a neighbor-

joining tree, with no constraints on collection members or their properties. However, for a 

computational solution to be of real practical benefit to germplasm collection managers, other factors 

need to be considered. For example, it would be useful to be able to place constraints on datasets, as 

different managers will have different priorities for selecting core collections such as requiring allelic 

variation at a particular site or only including accessions with particular characteristics. Furthermore, 

many traditionally created core collections attempt to maximise variation not only genetically but also 

geographically and phenotypically and this needs to be taken into account in algorithmic approaches. 

We also need to develop techniques to account for missing data. For example, in our current marker 

analysis of the JIC Pisum dataset, roughly 10% of the dataset is uninterpretable, an unfortunate but 

common downside to high-throughput techniques. If we were to use basic techniques for dealing with 

missing data, we would ignore any marker where could not determine a score for one or more 

accessions. In some datasets this could mean ignoring a large proportion of the dataset. Clearly, more 

research in this area is required to maximise the information gained from germplasm collections with 

missing marker scores (or indeed any other type of missing data). 

 

Discussion 
Germplasm collections are essential resources for maintaining and documenting crop diversity and for 

developing efficient and targeted plant breeding studies. They contain useful alleles and allelic 

combinations that may help to combat crop disease and to overcome environmental pressures. High-

throughput marker technologies present us with large, complex datasets that describe these collections 

in much greater genetic detail than has been available before now. Such information will enable us to 

understand the structure of crop plant species and therefore help us to develop strategies for the 

development of new varieties. Here, we have presented recent research in the analysis of such datasets, 

describing how marker scores may be predicted, evolutionary distances be estimated, and collection 

structures and core collections be determined. These approaches are essentially first efforts at 

understanding these datasets. In addition to the approaches touched upon here, other techniques may 

also be of considerable value. For example, a pilot study on the use of data mining algorithms (C4.5 

and simulated annealing) for rule-based classification of trait-allele associations, in particular the 

association of marker scores with disease status, has been promising [9]. For all our methods, we need 

to evaluate formally their efficiency and utility, possibly through simulation. Ultimately, we aim to 

develop more sophisticated methodologies that will allow us and others to exploit these datasets to 

their full potential. 
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