
TriLoNet User Manual

James Oldman

1 Introduction

TriLoNet is a Java software package presented in [1] created to construct rooted level-1 phylogenetic networks
from aligned DNA sequence data. The software package consists of the main module:

• TriLoNet - constructs level-1 phylogenetic networks from a dense collection of trinets.

In addition, it also contains the following four complementary tools including:

• SeqTrinet - constructs a dense set of trinets from a multiple sequence alignment

• TriExtract - extracts the set of trinets from a level-1 phylogenetic network

• PNDist - calculates two distance measures for a pair of level-1 phylogenetic networks

• PNGenerator - randomly generates a set of n level-1 phylogenetic networks on l leaves

The algorithms and details for the last three tools can be found in [2].

2 Availability and Installation Requirements

TriLoNet 1.2 (and accompanying tools) have been implemented in Java and compiled using Java SE 8.0,
please ensure Java Virtual Machine (JVM) version 8.0 or above has been installed [3]. Next, download the
file TriLoNet.zip from https://www.uea.ac.uk/computing/trilonet/ and extract the contents. The zip
file contains this manual in PDF format, TriLoNet.jar, TriExtract.jar, PNDist.jar and PNGenerator.jar.
These files are platform independent and can be run on Windows, Mac OSX and Linux. The instructions here
assume a Mac OSX environment.

When running these tools on large datasets, it is recommended to allocate more RAM for the heap space,
otherwise an OutOfMemoryError may occur. Heap space can be increased using the command line option -Xmx.
For example, use the following command:

java -Xmx4096m -jar TriLoNet.jar

to allocate 4GB of heap space for use by TriLoNet (replace TriLoNet for TriExtract, PNDist or PNGenerator
depending on the program).

3 Input Overview

TriLoNet primarily accepts three file formats as input; .nex, .fsa and .tnets. See [4] and [5] as well as some
example files we have included for more information on the NEXUS and FASTA file formats. The reading in
and outputting of eNewick strings [6] has been adapted from the Network class of Lev1generator [7], software
developed for the generation of random level-1 phylogenetic networks and the FASTA file reading has been
adapted from FastaReader.java [8]. If two or more sequences in the given input file are identical, TriLoNet
will remove the duplicate sequences and relabel one of the sequences to represent the duplicate sequences. The
taxa names are separated by two underscore characters (). For example, given either a NEXUS or FASTA file
containing sequences {A, B, C, D, E, F, G} with taxa A, C and F being duplicates, after preprocessing, the set
of sequences is {A C F, B, D, E, G}.

1

The TNETS format is simply a text file containing a dense collection of trinets, with exactly one trinet per line.
Each line contains four pieces of information: the three leaf labels of the trinet and the trinet type. Please note
that acceptable taxa labels include alphanumeric characters (A-Z, a-z, 0-9) and the underscore () symbol. The
hash symbol (#) is reserved for the labelling of reticulation vertices and the letter n followed by any number
(e.g. n0 or n28) is reserved for the labelling of internal vertices. The label “root” is also reserved. Ensure that
there are no spaces in the taxa labels and that all taxa labels are unique. See the included file example.tnets

for an example of the TNETS format. The input file example.tnets contains the following 4 lines of text:

a c b S1

b a d N3

a c d T1

b c d N3

which correspond to the trinets displayed by the phylogenetic network presented in Figure 1.

4 Basic Usage

To get started, extract the contents of TriLoNet.zip and navigate to the location of the TriLoNet.jar file
using the command prompt/terminal. To run TriLoNet from the command line and depending on the input
(.NEXUS, .FSA or .TNETS), use

java -jar TriLoNet.jar example.nex

or

java -jar TriLoNet.jar example.fsa

or

java -jar TriLoNet.jar example.tnets

which will result in myOutput.dot (open in GraphViz) and myOutput.txt which contains the eNewick string of
the constructed phylogenetic network as well as a summary of the construction process. The file output.tree will
contain the eNewick string representation of the network constructed by TriLoNet. Additionally, the names of
the output files can be specified when running TriLoNet, for example:

java -jar TriLoNet.jar example.nex anExample.dot exampleOutput.txt

TriLoNet

TriLoNet can take in three types of input including aligned DNA sequence data (on the alphabet {A,C,G, T})
in NEXUS or FASTA format, as well as a dense set of trinets in TNETS format. From this input, TriLoNet
will construct and output a phylogenetic network in eNewick and DOT format. The command

java -jar TriLoNet.jar example.tnets myOutput.txt

will instruct TriLoNet to take as input the set of trinets contained in the file example.tnets and output the files
myOutput.txt and myOutput.dot.
The text file myOutput.txt will contain a summary of the network construction process as well as the eNewick
string of the network constructed by TriLoNet. If everything has installed correctly, the DOT file myOutput.dot

2

will contain a graphic representation of this phylogenetic network, which is shown in Figure 1. See the Viewing
Output section for more information on the DOT format.

Figure 1: An example phylogenetic network.

SeqTrinet

SeqTrinet will read in a multiple sequence alignment and output a dense collection of trinets. To use the
SeqTrinet module, use the argument --st. For example, the command

java -jar TriLoNet.jar Cooper.nex --st

will instruct TriLoNet to use SeqTrinet to output a dense collection of trinets constructed from Cooper.nex.

5 Viewing Output

The Graph Visualisation program GraphViz [9] is required to view the .dot file representing the networks
constructed by TriLoNet. This file will provide a visual representation of the network constructed by TriLoNet.
A summary of each run will be outputted as a text file. This text file will contain the eNewick representation of
the phylogenetic network constructed by TriLoNet as well as detailed information on the construction process.
The last line in the output text file is an eNewick string that can be pasted and viewed in the software package
Dendroscope [10].

6 Command line Options

The user can also optionally specify breakpoints when using a NEXUS or FASTA file as input with the argument
--b followed by the desired sites separated by a comma. For example, the argument

--b10,15,18

would insert breakpoints at sites 10, 15 and 18 in a NEXUS or FASTA file.
The user can also modify the kappa threshold value used in the construction of a set of trinets from a multiple
sequence alignment in a NEXUS or FASTA file. The default value is 6.5. For example, to change this the user
can specify the argument

--k4.0

to change the kappa threshold to 4.0.

3

7 Example

The website http://phylonetworks.blogspot.co.uk/p/datasets.html hosts several data sets containing re-
combinants. Here we have included an example on a giardia data set studied in [11]. In this data set the taxon
335 is a recombinant. The line

java -jar TriLoNet.jar Cooper.nex --b5979,7444

will result in the network shown in Figure 2.

WB

335

303__305

246

JH

55

Figure 2: The phylogenetic network constructed by TriLoNet on a giardia data set studied in Cooper et al.
(2007).

TriExtract

The tool TriExtract will extract the trinets displayed by a level-1 phylogenetic network. To do this the user
can specify an input .tree file containing an eNewick string and an output .tnets file to write to and record the
set of trinets.
TriExtract accepts as input a single eNewick String from a .tree file. The reading in and outputting of eNewick
strings [6] has been adapted from the Network class of Lev1generator [7], software developed for the generation of
random level-1 phylogenetic networks. Please note that acceptable taxa labels include alphanumeric characters
(A-Z, a-z, 0-9) and the underscore () symbol. The hash symbol (#) is reserved for the labelling of reticulation
vertices and the letter n followed by any number (e.g. n0 or n28) is reserved for the labelling of internal vertices.
The label “root” is also reserved. Ensure that there are no spaces in the taxa labels and that all taxa labels are
unique.
TriExtract ouputs a tnets file. The tnets format is simply a text file containing a dense collection of trinets,
with exactly one trinet per line. Each line contains four pieces of information: the three leaf labels of the trinet
and the trinet type.
To get started, extract the contents of TriExtract.zip and navigate to the location of the TriExtract.jar

file using the command prompt/terminal.
The eNewick string contained in firstExample.tree is:

(d, ((a, (b)#H1), (c,#H1)));

4

which corresponds to the phylogenetic network shown in Figure 1.

Entering

java -jar TriExtract.jar firstExample.tree output.dot output.tnets output.txt

into the terminal will instruct TriExtract to construct the network represented by the eNewick string contained
in firstExample.tree and output the set of trinets displayed by this network to output.tnets. The file output.dot
will contain a graphic representation of the network and output.txt will contain a summary of the extraction
process. The only argument strictly necessary when running TriExtract is the .tree file, the arguments are
used for specifying user selected names for the .dot, .tnets and .txt files created by TriExtract.

PNDist

PNDist calculates two distance measures discussed in [2] between a pair of binary rooted level-1 phylogenetic
networks. PNDist accepts as input a .tree file containing two eNewick strings on separate lines. See the
TriExtract section for more information on eNewick strings and the .tree file format. PNDist calculates the Tn
and Rf distance measure between the pair of networks given as input and prints the results to a .txt file.
As an example, entering

java -jar PNDist.jar example.tree

will produce a text file containing scores of D′tn = 0.6202 and D′rf = 0.3448.

By default, PNDist will output both D′tn and D′tn to a .txt file. To calculate just one of the measures instead
of both, the optional arguments −− tn and −− rf are used. For example, entering

java -jar PNDist.jar example.tree --tn

will instruct PNDist to calcuate and output only D′tn = 0.6202 to a .txt file.

PNGenerator

PNGenerator randomly generates rooted binary level-1 phylogenetic networks and takes in two integers as input.
One of the input arguments l specifies the number of leaves wanted in the generated network. The other input
argument n specifies the number of random networks created by PNGenerator. To get started, extract the
contents of PNGenerator.zip and navigate to the location of the PNGenerator.jar file using the command
prompt/terminal.
As an example, entering

java -jar PNGenerator.jar --l50 --n100

into the terminal will instruct PNGenerator to generate 100 random networks each on 50 leaves. There is also
the optional argument t that instructs PNGenerator to output trees instead of networks. For example, entering

java -jar PNGenerator.jar --l30 --n40 --t

into the terminal will instruct PNGenerator to generate 40 random trees each on 30 leaves.
PNGenerator will output the eNewick strings of the randomly generated networks (trees) to a .txt file.

5

8 Disclaimer

This software is supplied as-is, with no warranty of any kind expressed or implied. We have made every effort
to avoid errors in design and execution of this software, but we will not be liable for its use or misuse. The user
is solely responsible for the validity and consequences of any results generated. This program is distributed in
the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability
or fitness for a particular purpose. See the GNU General Public License for more details.

9 Research Team

James Oldman, Prof. Vincent Moulton and Dr. Taoyang Wu
For technical questions, please e-mail james.oldman@gmail.com
TriLoNet is Copyright 2011-2015 James Oldman, Vincent Moulton and Taoyang Wu.

References

[1] James Oldman, Taoyang Wu, Leo van Iersel, and Vincent Moulton. Trilonet: Piecing together small
networks to reconstruct reticulate evolutionary histories. Molecular Biology and Evolution, 2016.

[2] Vincent Moulton, James Oldman, and Taoyang Wu. Comparing level-1 networks by counting trinets.
Preprint, 2016.

[3] Sun Microsystems. Java downloads for all operating systems. http://java.com/en/download/manual.

jsp, 2015. [Online; accessed 5-Oct-2015].

[4] Ecology and Evolutionary Biology Department of the University of Connecticut. Phylogenetics: Nexus
format. http://hydrodictyon.eeb.uconn.edu/eebedia/index.php/Phylogenetics:_NEXUS_Format,
2014. [Online; accessed 5-Oct-2015].

[5] Zhang Lab University of Michigan. What is fasta format? http://zhanglab.ccmb.med.umich.edu/

FASTA/, 2015. [Online; accessed 5-Oct-2015].

[6] Monique M Morin and Bernard ME Moret. Netgen: generating phylogenetic networks with diploid hybrids.
Bioinformatics, 22(15):1921–1923, 2006.

[7] Katharina T Huber, Leo Van Iersel, Steven Kelk, and Radoslaw Suchecki. A practical algorithm for
reconstructing level-1 phylogenetic networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), 8(3):635–649, 2011.

[8] Joe Wandy. Parsing a fasta file in java. https://raw.githubusercontent.com/joewandy/BioinfoApp/

master/src/com/joewandy/bioinfoapp/model/core/io/FastaReader.java, 2011. [Online; accessed 15-
May-2014].

[9] Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with dot. 2006.

[10] Daniel H Huson and Celine Scornavacca. Dendroscope 3: an interactive tool for rooted phylogenetic trees
and networks. Systematic biology, page sys062, 2012.

[11] Margarethe A Cooper, Rodney D Adam, Michael Worobey, and Charles R Sterling. Population genetics
provides evidence for recombination in giardia. Current Biology, 17(22):1984–1988, 2007.

6

